update links for README

Signed-off-by: Ting Wang <kathy.wangting@huawei.com>
pull/6572/head
Ting Wang 4 years ago
parent 295e2b1bb8
commit ac627e046b

@ -31,7 +31,7 @@ enrichment of the AI software/hardware application ecosystem.
<img src="docs/MindSpore-architecture.png" alt="MindSpore Architecture" width="600"/>
For more details please check out our [Architecture Guide](https://www.mindspore.cn/docs/en/master/architecture.html).
For more details please check out our [Architecture Guide](https://www.mindspore.cn/doc/note/en/master/design/mindspore/architecture.html).
### Automatic Differentiation
@ -206,7 +206,7 @@ please check out [docker](docker/README.md) repo for the details.
## Quickstart
See the [Quick Start](https://www.mindspore.cn/tutorial/en/master/quick_start/quick_start.html)
See the [Quick Start](https://www.mindspore.cn/tutorial/training/en/master/quick_start/quick_start.html)
to implement the image classification.
## Docs

@ -28,7 +28,7 @@ MindSpore提供了友好的设计和高效的执行旨在提升数据科学
<img src="docs/MindSpore-architecture.png" alt="MindSpore Architecture" width="600"/>
欲了解更多详情,请查看我们的[总体架构](https://www.mindspore.cn/docs/zh-CN/master/architecture.html)。
欲了解更多详情,请查看我们的[总体架构](https://www.mindspore.cn/doc/note/zh-CN/master/design/mindspore/architecture.html)。
### 自动微分
@ -201,7 +201,7 @@ MindSpore的Docker镜像托管在[Docker Hub](https://hub.docker.com/r/mindspore
## 快速入门
参考[快速入门](https://www.mindspore.cn/tutorial/zh-CN/master/quick_start/quick_start.html)实现图片分类。
参考[快速入门](https://www.mindspore.cn/tutorial/training/zh-CN/master/quick_start/quick_start.html)实现图片分类。
## 文档

@ -6,7 +6,7 @@ MindSpore lite is a high-performance, lightweight open source reasoning framewor
<img src="../../docs/MindSpore-Lite-architecture.png" alt="MindSpore Lite Architecture" width="600"/>
For more details please check out our [MindSpore Lite Architecture Guide](https://www.mindspore.cn/lite/docs/en/master/architecture.html).
For more details please check out our [MindSpore Lite Architecture Guide](https://www.mindspore.cn/doc/note/en/master/design/mindspore/architecture_lite.html).
### MindSpore Lite features
@ -41,7 +41,7 @@ For more details please check out our [MindSpore Lite Architecture Guide](https:
2. Model converter and optimization
If you use MindSpore or a third-party model, you need to use [MindSpore Lite Model Converter Tool](https://www.mindspore.cn/lite/tutorial/en/master/use/converter_tool.html) to convert the model into MindSpore Lite model. The MindSpore Lite model converter tool provides the converter of TensorFlow Lite, Caffe, ONNX to MindSpore Lite model, fusion and quantization could be introduced during convert procedure.
If you use MindSpore or a third-party model, you need to use [MindSpore Lite Model Converter Tool](https://www.mindspore.cn/tutorial/lite/en/master/use/convert_model.html) to convert the model into MindSpore Lite model. The MindSpore Lite model converter tool provides the converter of TensorFlow Lite, Caffe, ONNX to MindSpore Lite model, fusion and quantization could be introduced during convert procedure.
MindSpore also provides a tool to convert models running on IoT devices .
@ -51,7 +51,7 @@ For more details please check out our [MindSpore Lite Architecture Guide](https:
4. Inference
Load the model and perform inference. [Inference](https://www.mindspore.cn/lite/tutorial/en/master/use/runtime.html) is the process of running input data through the model to get output.
Load the model and perform inference. [Inference](https://www.mindspore.cn/tutorial/lite/en/master/use/runtime.html) is the process of running input data through the model to get output.
MindSpore provides pre-trained model that can be deployed on mobile device [example](https://www.mindspore.cn/lite/examples/en).

@ -9,7 +9,7 @@ MindSpore Lite是MindSpore推出的端云协同的、轻量化、高性能AI推
<img src="../../docs/MindSpore-Lite-architecture.png" alt="MindSpore Lite Architecture" width="600"/>
欲了解更多详情,请查看我们的[MindSpore Lite 总体架构](https://www.mindspore.cn/lite/docs/zh-CN/master/architecture.html)。
欲了解更多详情,请查看我们的[MindSpore Lite 总体架构](https://www.mindspore.cn/lite/doc/note/zh-CN/master/design/mindspore/architecture_lite.html)。
## MindSpore Lite技术特点
@ -49,7 +49,7 @@ MindSpore Lite是MindSpore推出的端云协同的、轻量化、高性能AI推
2. 模型转换/优化
如果您使用MindSpore或第三方训练的模型需要使用[MindSpore Lite模型转换工具](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/converter_tool.html)转换成MindSpore Lite模型格式。MindSpore Lite模型转换工具不仅提供了将TensorFlow Lite、Caffe、ONNX等模型格式转换为MindSpore Lite模型格式还提供了算子融合、量化等功能。
如果您使用MindSpore或第三方训练的模型需要使用[MindSpore Lite模型转换工具](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/convert_model.html)转换成MindSpore Lite模型格式。MindSpore Lite模型转换工具不仅提供了将TensorFlow Lite、Caffe、ONNX等模型格式转换为MindSpore Lite模型格式还提供了算子融合、量化等功能。
MindSpore还提供了将IoT设备上运行的模型转换成.C代码的生成工具。
@ -61,7 +61,7 @@ MindSpore Lite是MindSpore推出的端云协同的、轻量化、高性能AI推
4. 模型推理
主要完成模型推理工作,即加载模型,完成模型相关的所有计算。[推理](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/runtime.html)是通过模型运行输入数据,获取预测的过程。
主要完成模型推理工作,即加载模型,完成模型相关的所有计算。[推理](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/runtime.html)是通过模型运行输入数据,获取预测的过程。
MindSpore提供了预训练模型部署在智能终端的[样例](https://www.mindspore.cn/lite/examples)。

@ -41,7 +41,7 @@ MDP requires MindSpore version 0.7.0-beta or later. MDP is actively evolving. In
### Tutorial
**Bayesian Neural Network**
1. Process the required dataset. The MNIST dateset is used in the example. Data processing is consistent with [Implementing an Image Classification Application](https://www.mindspore.cn/tutorial/en/master/quick_start/quick_start.html) in Tutorial.
1. Process the required dataset. The MNIST dateset is used in the example. Data processing is consistent with [Implementing an Image Classification Application](https://www.mindspore.cn/tutorial/training/en/master/quick_start/quick_start.html) in Tutorial.
2. Define a Bayesian Neural Network. The bayesian LeNet is used in this example.
@ -220,7 +220,7 @@ net_loss = ELBO(latent_prior='Normal', output_prior='Normal')
optimizer = nn.Adam(params=vae.trainable_params(), learning_rate=0.001)
net_with_loss = nn.WithLossCell(vae, net_loss)
```
3. Process the required dataset. The MNIST dateset is used in the example. Data processing is consistent with [Implementing an Image Classification Application](https://www.mindspore.cn/tutorial/en/master/quick_start/quick_start.html) in Tutorial.
3. Process the required dataset. The MNIST dateset is used in the example. Data processing is consistent with [Implementing an Image Classification Application](https://www.mindspore.cn/tutorial/training/en/master/quick_start/quick_start.html) in Tutorial.
4. Use SVI interface to train VAE network. vi.run can return the trained network, get_train_loss can get the loss after training.
```
@ -423,7 +423,7 @@ if __name__ == "__main__":
**Uncertainty Evaluation**
The uncertainty estimation toolbox is based on MindSpore Deep Probabilistic Programming (MDP), and it is suitable for mainstream deep learning models, such as regression, classification, target detection and so on. In the inference stage, with the uncertainy estimation toolbox, developers only need to pass in the trained model and training dataset, specify the task and the samples to be estimated, then can obtain the aleatoric uncertainty and epistemic uncertainty. Based the uncertainty information, developers can understand the model and the dataset better.
In classification task, for example, the model is lenet model. The MNIST dateset is used in the example. Data processing is consistent with [Implementing an Image Classification Application](https://www.mindspore.cn/tutorial/en/master/quick_start/quick_start.html) in Tutorial. For evaluating the uncertainty of test examples, the use of the toolbox is as follows:
In classification task, for example, the model is lenet model. The MNIST dateset is used in the example. Data processing is consistent with [Implementing an Image Classification Application](https://www.mindspore.cn/tutorial/training/en/master/quick_start/quick_start.html) in Tutorial. For evaluating the uncertainty of test examples, the use of the toolbox is as follows:
```
from mindspore.nn.probability.toolbox.uncertainty_evaluation import UncertaintyEvaluation
from mindspore.train.serialization import load_checkpoint, load_param_into_net

@ -52,8 +52,8 @@ Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Quick Start](#contents)

@ -67,8 +67,8 @@ Before running code of this projectplease ensure you have the following envir
For more information about how to get started with MindSpore, see the following sections:
- [MindSpore's Tutorial](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore's Api](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
## Quick Start Guide

@ -57,7 +57,7 @@ The default configuration of the Dataset are as follows:
## Mixed Precision
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
@ -69,8 +69,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)

@ -55,7 +55,7 @@ Dataset used: [CIFAR-10](<http://www.cs.toronto.edu/~kriz/cifar.html>)
## Mixed Precision
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
@ -67,8 +67,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
@ -334,7 +334,7 @@ Parameters for both training and evaluation can be set in config.py
## [How to use](#contents)
### Inference
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/network_migration.html). Following the steps below, this is a simple example:
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
- Running on Ascend

@ -45,7 +45,7 @@ Dataset used can refer to paper.
## [Mixed Precision(Ascend)](#contents)
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
@ -56,8 +56,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Script description](#contents)
@ -132,7 +132,7 @@ sh run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
sh run_standalone_train.sh DEVICE_ID DATA_PATH
```
> Notes:
RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training_ascend.html) , and the device_ip can be got as [Link]https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools.
RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html) , and the device_ip can be got as [Link]https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools.
> This is processor cores binding operation regarding the `device_num` and total processor numbers. If you are not expect to do it, remove the operations `taskset` in `scripts/run_distribute_train.sh`

@ -58,8 +58,8 @@ Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Quick Start](#contents)

@ -60,8 +60,8 @@ Dataset used: [MNIST](<http://yann.lecun.com/exdb/mnist/>)
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Quick Start](#contents)

@ -52,8 +52,8 @@ MaskRCNN is a two-stage target detection network. It extends FasterRCNN by addin
- Framework
- [MindSpore](https://gitee.com/mindspore/mindspore)
- For more information, please check the resources below:
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/en/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/en/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
- third-party libraries
@ -307,7 +307,7 @@ Usage: sh run_standalone_train.sh [PRETRAINED_MODEL]
## [Training Process](#contents)
- Set options in `config.py`, including loss_scale, learning rate and network hyperparameters. Click [here](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html#mindspore) for more information about dataset.
- Set options in `config.py`, including loss_scale, learning rate and network hyperparameters. Click [here](https://www.mindspore.cn/tutorial/training/zh-CN/master/use/data_preparation.html) for more information about dataset.
### [Training](#content)
- Run `run_standalone_train.sh` for non-distributed training of MaskRCNN model.

@ -43,7 +43,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
## [Mixed Precision(Ascend)](#contents)
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
# [Environment Requirements](#contents)
@ -53,8 +53,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Script description](#contents)

@ -47,7 +47,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
## [Mixed Precision](#contents)
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
# [Environment Requirements](#contents)
@ -57,8 +57,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Script description](#contents)

@ -47,8 +47,8 @@ Dataset used: [imagenet](http://www.image-net.org/)
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Script description](#contents)

@ -43,10 +43,10 @@ A testing set containing about 2000 readable words
- HardwareAscend
- Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
- [MindSpore](http://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
- install Mindspore
- install [pyblind11](https://github.com/pybind/pybind11)
- install [Opencv3.4](https://docs.opencv.org/3.4.9/d7/d9f/tutorial_linux_install.html)
@ -193,7 +193,7 @@ Calculated!{"precision": 0.814796668299853, "recall": 0.8006740491092923, "hmean
### Inference
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/network_migration.html). Following the steps below, this is a simple example:
If you need to use the trained model to perform inference on multiple hardware platforms, such as GPU, Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
```
# Load unseen dataset for inference

@ -72,7 +72,7 @@ Dataset used: [ImageNet2012](http://www.image-net.org/)
## Mixed Precision
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data types, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data types, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
# [Environment Requirements](#contents)
@ -82,8 +82,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)

@ -46,7 +46,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
## [Mixed Precision](#contents)
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
# [Environment Requirements](#contents)
@ -56,8 +56,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Script description](#contents)

@ -50,8 +50,8 @@ The classical first-order optimization algorithm, such as SGD, has a small amoun
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
## Quick Start
After installing MindSpore via the official website, you can start training and evaluation as follows:

@ -47,7 +47,7 @@ Dataset used: [imagenet](http://www.image-net.org/)
## [Mixed Precision](#contents)
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
@ -58,8 +58,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Script description](#contents)

@ -42,8 +42,8 @@ Dataset used: [imagenet](http://www.image-net.org/)
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below:
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Script description](#contents)

@ -147,7 +147,7 @@ sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID]
### Training on Ascend
To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/converting_datasets.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_datasets.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.**
- Distribute mode

@ -57,8 +57,8 @@ Dataset used: [ISBI Challenge](http://brainiac2.mit.edu/isbi_challenge/home)
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
@ -235,7 +235,7 @@ step: 300, loss is 0.18949677, fps is 57.63118508760329
## [How to use](#contents)
### Inference
If you need to use the trained model to perform inference on multiple hardware platforms, such as Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/network_migration.html). Following the steps below, this is a simple example:
If you need to use the trained model to perform inference on multiple hardware platforms, such as Ascend 910 or Ascend 310, you can refer to this [Link](https://www.mindspore.cn/tutorial/training/master/advanced_use/migrate_3rd_scripts.html). Following the steps below, this is a simple example:
- Running on Ascend

@ -78,7 +78,7 @@ here basic modules mainly include basic operation like: **3×3 conv** and **2×
## Mixed Precision
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
@ -90,8 +90,8 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
- Framework
- [MindSpore](https://www.mindspore.cn/install/en)
- For more information, please check the resources below
- [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
# [Quick Start](#contents)
@ -290,7 +290,7 @@ train_parallel1/log:epcoh: 2 step: 97, loss is 1.7133579
...
...
```
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html).
> About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_tutorials.html).
> **Attention** This will bind the processor cores according to the `device_num` and total processor numbers. If you don't expect to run pretraining with binding processor cores, remove the operations about `taskset` in `scripts/run_distribute_train.sh`

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save