parent
a6399e7a8a
commit
ac6f5983b5
@ -0,0 +1,60 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=True, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def construct(self, x, y):
|
||||||
|
y = y + 10
|
||||||
|
while x < y:
|
||||||
|
x = (x + 2) * (y - 9)
|
||||||
|
y = y + 2
|
||||||
|
x = x + 5
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, forward_net):
|
||||||
|
super(BackwardNet, self).__init__()
|
||||||
|
self.forward_net = forward_net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
c1 = Tensor([0], mstype.int32)
|
||||||
|
c2 = Tensor([0], mstype.int32)
|
||||||
|
expect = Tensor([75], mstype.int32)
|
||||||
|
forward_net = ForwardNet()
|
||||||
|
output = forward_net(c1, c2)
|
||||||
|
assert expect == output
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
c1 = Tensor([0], mstype.int32)
|
||||||
|
c2 = Tensor([0], mstype.int32)
|
||||||
|
expect = Tensor([75], mstype.int32)
|
||||||
|
forward_net = ForwardNet()
|
||||||
|
output = forward_net(c1, c2)
|
||||||
|
assert expect == output
|
@ -0,0 +1,67 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
i = self.i
|
||||||
|
out = self.zero
|
||||||
|
while i < self.max_cycles:
|
||||||
|
if out <= 20:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,114 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
i = self.i
|
||||||
|
out = self.zero
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
if out > 20:
|
||||||
|
break
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNetReplaceBreak(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNetReplaceBreak, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
i = self.i
|
||||||
|
out = self.zero
|
||||||
|
while i < self.max_cycles and out <= 20:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNetReplaceBreak(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNetReplaceBreak, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
# Problem: Exceed function call depth limit 1000.
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward_replace_break():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNetReplaceBreak(max_cycles=10)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
# Problem: Exceed function call depth limit 1000.
|
||||||
|
def test_backward_replace_break():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNetReplaceBreak(max_cycles=10)
|
||||||
|
backward_net = BackwardNetReplaceBreak(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,64 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
for _ in range(self.max_cycles):
|
||||||
|
if out <= 20:
|
||||||
|
out = x * y + out
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,65 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
for _ in range(self.max_cycles):
|
||||||
|
out = x * y + out
|
||||||
|
if out > 20:
|
||||||
|
break
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,68 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
i = self.i
|
||||||
|
if x > y:
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,68 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
i = self.i
|
||||||
|
out = self.zero
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
if out >= 20:
|
||||||
|
out = out - 20
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,69 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
i = self.i
|
||||||
|
out = self.zero
|
||||||
|
while i < self.max_cycles:
|
||||||
|
if out <= 20:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
if out >= 30:
|
||||||
|
out = out - 30
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,70 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
i = self.i
|
||||||
|
if x > y:
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
if out > 20:
|
||||||
|
out = out - 20
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,71 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
i = self.i
|
||||||
|
while x < y:
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
x = x + 1
|
||||||
|
if out > 20:
|
||||||
|
out = out - 20
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,68 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
while x < y:
|
||||||
|
for _ in range(0, self.max_cycles):
|
||||||
|
out = x * y + out
|
||||||
|
x = x + 1
|
||||||
|
if out > 20:
|
||||||
|
out = out - 20
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,68 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
i = self.i
|
||||||
|
out = self.zero
|
||||||
|
if out >= 20:
|
||||||
|
out = out - 20
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,69 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
i = self.i
|
||||||
|
out = self.zero
|
||||||
|
if x < y:
|
||||||
|
if out >= 20:
|
||||||
|
out = out - 20
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,69 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
i = self.i
|
||||||
|
out = self.zero
|
||||||
|
while i < self.max_cycles:
|
||||||
|
if out <= 20:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = out + 10
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,68 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
i = self.i
|
||||||
|
out = self.zero
|
||||||
|
for _ in range(0, self.max_cycles):
|
||||||
|
if out <= 20:
|
||||||
|
out = x * y + out
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = out + 10
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=10)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,70 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
self.i = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
i = self.i
|
||||||
|
if x > y:
|
||||||
|
while i < self.max_cycles:
|
||||||
|
out = x * y + out
|
||||||
|
i = i + 1
|
||||||
|
while out > 20:
|
||||||
|
out = out - 20
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
@ -0,0 +1,67 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from mindspore.common import dtype as mstype
|
||||||
|
from mindspore import nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import composite as C
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, save_graphs=False, device_target="Ascend")
|
||||||
|
|
||||||
|
|
||||||
|
class ForwardNet(nn.Cell):
|
||||||
|
def __init__(self, max_cycles=10):
|
||||||
|
super(ForwardNet, self).__init__()
|
||||||
|
self.max_cycles = max_cycles
|
||||||
|
self.zero = Tensor(np.array(0), mstype.int32)
|
||||||
|
|
||||||
|
def construct(self, x, y):
|
||||||
|
out = self.zero
|
||||||
|
if x > y:
|
||||||
|
for _ in range(0, self.max_cycles):
|
||||||
|
out = x * y + out
|
||||||
|
while out > 20:
|
||||||
|
out = out - 20
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class BackwardNet(nn.Cell):
|
||||||
|
def __init__(self, net):
|
||||||
|
super(BackwardNet, self).__init__(auto_prefix=False)
|
||||||
|
self.forward_net = net
|
||||||
|
self.grad = C.GradOperation()
|
||||||
|
|
||||||
|
def construct(self, *inputs):
|
||||||
|
grads = self.grad(self.forward_net)(*inputs)
|
||||||
|
return grads
|
||||||
|
|
||||||
|
|
||||||
|
def test_forward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
out = forward_net(x, y)
|
||||||
|
print("forward out:", out)
|
||||||
|
|
||||||
|
|
||||||
|
def test_backward():
|
||||||
|
x = Tensor(np.array(1), mstype.int32)
|
||||||
|
y = Tensor(np.array(3), mstype.int32)
|
||||||
|
forward_net = ForwardNet(max_cycles=3)
|
||||||
|
backward_net = BackwardNet(forward_net)
|
||||||
|
grads = backward_net(x, y)
|
||||||
|
print("grads:", grads)
|
Loading…
Reference in new issue