|
|
|
@ -1853,3 +1853,42 @@ def test_write_with_float32_float64_float32_array_float64_array_and_MindDataset(
|
|
|
|
|
|
|
|
|
|
os.remove("{}".format(mindrecord_file_name))
|
|
|
|
|
os.remove("{}.db".format(mindrecord_file_name))
|
|
|
|
|
|
|
|
|
|
def test_numpy_generic():
|
|
|
|
|
|
|
|
|
|
paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
|
|
|
|
|
for x in range(FILES_NUM)]
|
|
|
|
|
for x in paths:
|
|
|
|
|
if os.path.exists("{}".format(x)):
|
|
|
|
|
os.remove("{}".format(x))
|
|
|
|
|
if os.path.exists("{}.db".format(x)):
|
|
|
|
|
os.remove("{}.db".format(x))
|
|
|
|
|
writer = FileWriter(CV_FILE_NAME, FILES_NUM)
|
|
|
|
|
cv_schema_json = {"label1": {"type": "int32"}, "label2": {"type": "int64"},
|
|
|
|
|
"label3": {"type": "float32"}, "label4": {"type": "float64"}}
|
|
|
|
|
data = []
|
|
|
|
|
for idx in range(10):
|
|
|
|
|
row = {}
|
|
|
|
|
row['label1'] = np.int32(idx)
|
|
|
|
|
row['label2'] = np.int64(idx*10)
|
|
|
|
|
row['label3'] = np.float32(idx+0.12345)
|
|
|
|
|
row['label4'] = np.float64(idx+0.12345789)
|
|
|
|
|
data.append(row)
|
|
|
|
|
writer.add_schema(cv_schema_json, "img_schema")
|
|
|
|
|
writer.write_raw_data(data)
|
|
|
|
|
writer.commit()
|
|
|
|
|
|
|
|
|
|
num_readers = 4
|
|
|
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", None, num_readers, shuffle=False)
|
|
|
|
|
assert data_set.get_dataset_size() == 10
|
|
|
|
|
idx = 0
|
|
|
|
|
for item in data_set.create_dict_iterator():
|
|
|
|
|
assert item['label1'] == item['label1']
|
|
|
|
|
assert item['label2'] == item['label2']
|
|
|
|
|
assert item['label3'] == item['label3']
|
|
|
|
|
assert item['label4'] == item['label4']
|
|
|
|
|
idx += 1
|
|
|
|
|
assert idx == 10
|
|
|
|
|
for x in paths:
|
|
|
|
|
os.remove("{}".format(x))
|
|
|
|
|
os.remove("{}.db".format(x))
|
|
|
|
|