!12914 [GraphKernel]expander lamb_apply_weight_assign
From: @wenfangpei Reviewed-by: @anyrenwei,@gaoxiong1,@gaoxiong1 Signed-off-by: @anyrenweipull/12914/MERGE
commit
b5bc938deb
@ -0,0 +1,56 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ===========================================================================
|
||||||
|
"""generate json desc for LambApplyWeightAssign"""
|
||||||
|
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||||
|
|
||||||
|
@VLD.check_all_formats_same
|
||||||
|
class LambApplyWeightAssign(Expander):
|
||||||
|
"""LambApplyWeightAssign expander"""
|
||||||
|
|
||||||
|
def _expand(self, graph_builder):
|
||||||
|
|
||||||
|
w_norm, g_norm, input_lr, update, input_param = self.inputs
|
||||||
|
# ratio
|
||||||
|
const_zero = graph_builder.value(g_norm.dtype, 0)
|
||||||
|
const_one = graph_builder.value(g_norm.dtype, 1)
|
||||||
|
dtype = update.dtype
|
||||||
|
|
||||||
|
g_norm_greater_res = graph_builder.emit('Greater', [g_norm, const_zero])
|
||||||
|
g_norm_greater_res_float = graph_builder.emit('Cast', [g_norm_greater_res], attrs={'dst_type': dtype})
|
||||||
|
|
||||||
|
w_norm_g_norm = graph_builder.emit('RealDiv', [w_norm, g_norm])
|
||||||
|
# select
|
||||||
|
g_norm_greater_res_neg = graph_builder.emit('Neg', [g_norm_greater_res_float])
|
||||||
|
g_norm_greater_res_f = graph_builder.emit('Add', [g_norm_greater_res_neg, const_one])
|
||||||
|
g_norm_value_1 = graph_builder.emit('Mul', [g_norm_greater_res_float, w_norm_g_norm])
|
||||||
|
g_norm_value = graph_builder.emit('Add', [g_norm_value_1, g_norm_greater_res_f])
|
||||||
|
|
||||||
|
w_norm_greater_res = graph_builder.emit('Greater', [w_norm, const_zero])
|
||||||
|
w_norm_greater_res_float = graph_builder.emit('Cast', [w_norm_greater_res], attrs={'dst_type': dtype})
|
||||||
|
|
||||||
|
# select
|
||||||
|
w_norm_greater_res_neg = graph_builder.emit('Neg', [w_norm_greater_res_float])
|
||||||
|
w_norm_greater_res_f = graph_builder.emit('Add', [w_norm_greater_res_neg, const_one])
|
||||||
|
w_norm_value_1 = graph_builder.emit('Mul', [w_norm_greater_res_float, g_norm_value])
|
||||||
|
ratio = graph_builder.emit('Add', [w_norm_value_1, w_norm_greater_res_f])
|
||||||
|
|
||||||
|
# ratio * input_lr * update
|
||||||
|
update_with_ir = graph_builder.emit('Mul', [update, input_lr])
|
||||||
|
ratio_update_with_ir = graph_builder.emit('Mul', [update_with_ir, ratio])
|
||||||
|
|
||||||
|
# input_param - ratio_update_with_ir
|
||||||
|
next_param = graph_builder.emit('Sub', [input_param, ratio_update_with_ir])
|
||||||
|
|
||||||
|
return [next_param]
|
@ -0,0 +1,58 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.lamb_apply_weight_assign = P.LambApplyWeightAssign()
|
||||||
|
|
||||||
|
def construct(self, w_norm, g_norm, lr, update, param):
|
||||||
|
return self.lamb_apply_weight_assign(w_norm, g_norm, lr, update, param)
|
||||||
|
|
||||||
|
def get_output(w_norm, g_norm, lr, update, param, enable_graph_kernel=False):
|
||||||
|
context.set_context(enable_graph_kernel=enable_graph_kernel)
|
||||||
|
opt = Net()
|
||||||
|
output = opt(Tensor(w_norm), Tensor(g_norm), Tensor(lr), Tensor(update), Tensor(param))
|
||||||
|
return output
|
||||||
|
|
||||||
|
def lamb_apply_weight_assign():
|
||||||
|
|
||||||
|
w_norm = np.array([0.11]).astype(np.float32)
|
||||||
|
g_norm = np.array([1.2]).astype(np.float32)
|
||||||
|
lr = np.array([0.012]).astype(np.float32)
|
||||||
|
update = np.array([0.01, 0.03, 0.05]).astype(np.float32)
|
||||||
|
param = np.array([1, 3, 5]).astype(np.float32)
|
||||||
|
|
||||||
|
expect = get_output(w_norm, g_norm, lr, update, param, False)
|
||||||
|
output = get_output(w_norm, g_norm, lr, update, param, True)
|
||||||
|
|
||||||
|
assert np.allclose(output.asnumpy(), expect.asnumpy())
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_lamb_apply_weight_assign_ascend():
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
lamb_apply_weight_assign()
|
Loading…
Reference in new issue