!8307 GNMT v2 network

From: @gaojing22
Reviewed-by: @yingjy,@yingjy,@c_34
Signed-off-by: @yingjy
pull/8307/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit b7fc189c2b

@ -43,6 +43,7 @@ In order to facilitate developers to enjoy the benefits of MindSpore framework,
- [Natural Language Processing](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp)
- [BERT[benchmark]](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/bert/README.md)
- [TinyBERT](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/tinybert/README.md)
- [GNMT V2](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/gnmt_v2/README.md)
- [LSTM](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/lstm/README.md)
- [MASS](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/mass/README.md)
- [Transformer](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/nlp/transformer/README.md)

File diff suppressed because it is too large Load Diff

@ -0,0 +1,20 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""GNMTv2 model configuration."""
from .config import GNMTConfig
__all__ = [
"GNMTConfig"
]

@ -0,0 +1,55 @@
{
"training_platform": {
"modelarts": false
},
"dataset_config": {
"random_seed": 50,
"epochs": 6,
"batch_size": 128,
"dataset_schema": "/home/workspace/dataset_menu/train.tok.clean.bpe.32000.en.json",
"pre_train_dataset": "/home/workspace/dataset_menu/train.tok.clean.bpe.32000.en.tfrecord-001-of-001",
"fine_tune_dataset": null,
"test_dataset": null,
"valid_dataset": null,
"dataset_sink_mode": true,
"dataset_sink_step": 2
},
"model_config": {
"seq_length": 51,
"vocab_size": 32320,
"hidden_size": 1024,
"num_hidden_layers": 4,
"intermediate_size": 4096,
"hidden_dropout_prob": 0.2,
"attention_dropout_prob": 0.2,
"initializer_range": 0.1,
"label_smoothing": 0.1,
"beam_width": 2,
"length_penalty_weight": 0.6,
"max_decode_length": 50
},
"loss_scale_config": {
"init_loss_scale": 65536,
"loss_scale_factor": 2,
"scale_window": 1000
},
"learn_rate_config": {
"optimizer": "adam",
"lr": 2e-3,
"lr_scheduler": "WarmupMultiStepLR",
"lr_scheduler_power": 0.5,
"warmup_lr_remain_steps": 0.666,
"warmup_lr_decay_interval": -1,
"decay_steps": 4,
"decay_start_step": -1,
"warmup_steps": 200,
"min_lr": 1e-6
},
"checkpoint_options": {
"existed_ckpt": "",
"save_ckpt_steps": 3452,
"keep_ckpt_max": 6,
"ckpt_prefix": "gnmt",
"ckpt_path": "text_translation"
}
}

@ -0,0 +1,228 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Configuration class for GNMT."""
import os
import json
import copy
from typing import List
import mindspore.common.dtype as mstype
def _is_dataset_file(file: str):
return "tfrecord" in file.lower() or "mindrecord" in file.lower()
def _get_files_from_dir(folder: str):
_files = []
for file in os.listdir(folder):
if _is_dataset_file(file):
_files.append(os.path.join(folder, file))
return _files
def get_source_list(folder: str) -> List:
"""
Get file list from a folder.
Returns:
list, file list.
"""
_list = []
if not folder:
return _list
if os.path.isdir(folder):
_list = _get_files_from_dir(folder)
else:
if _is_dataset_file(folder):
_list.append(folder)
return _list
PARAM_NODES = {"dataset_config",
"training_platform",
"model_config",
"loss_scale_config",
"learn_rate_config",
"checkpoint_options"}
class GNMTConfig:
"""
Configuration for `GNMT`.
Args:
random_seed (int): Random seed.
batch_size (int): Batch size of input dataset.
epochs (int): Epoch number.
dataset_sink_mode (bool): Whether enable dataset sink mode.
dataset_sink_step (int): Dataset sink step.
lr_scheduler (str): Whether use lr_scheduler, only support "ISR" now.
lr (float): Initial learning rate.
min_lr (float): Minimum learning rate.
decay_start_step (int): Step to decay.
warmup_steps (int): Warm up steps.
dataset_schema (str): Path of dataset schema file.
pre_train_dataset (str): Path of pre-training dataset file or folder.
fine_tune_dataset (str): Path of fine-tune dataset file or folder.
test_dataset (str): Path of test dataset file or folder.
valid_dataset (str): Path of validation dataset file or folder.
ckpt_path (str): Checkpoints save path.
save_ckpt_steps (int): Interval of saving ckpt.
ckpt_prefix (str): Prefix of ckpt file.
keep_ckpt_max (int): Max ckpt files number.
seq_length (int): Length of input sequence. Default: 64.
vocab_size (int): The shape of each embedding vector. Default: 46192.
hidden_size (int): Size of embedding, attention, dim. Default: 512.
num_hidden_layers (int): Encoder, Decoder layers.
intermediate_size (int): Size of intermediate layer in the Transformer
encoder/decoder cell. Default: 4096.
hidden_act (str): Activation function used in the Transformer encoder/decoder
cell. Default: "relu".
init_loss_scale (int): Initialized loss scale.
loss_scale_factor (int): Loss scale factor.
scale_window (int): Window size of loss scale.
beam_width (int): Beam width for beam search in inferring. Default: 4.
length_penalty_weight (float): Penalty for sentence length. Default: 1.0.
label_smoothing (float): Label smoothing setting. Default: 0.1.
input_mask_from_dataset (bool): Specifies whether to use the input mask that loaded from
dataset. Default: True.
save_graphs (bool): Whether to save graphs, please set to True if mindinsight
is wanted.
dtype (mstype): Data type of the input. Default: mstype.float32.
max_decode_length (int): Max decode length for inferring. Default: 64.
hidden_dropout_prob (float): The dropout probability for hidden outputs. Default: 0.1.
attention_dropout_prob (float): The dropout probability for
Multi-head Self-Attention. Default: 0.1.
initializer_range (float): Initialization value of TruncatedNormal. Default: 0.02.
"""
def __init__(self,
modelarts=False, random_seed=74,
epochs=6, batch_size=64,
dataset_schema: str = None,
pre_train_dataset: str = None,
fine_tune_dataset: str = None,
test_dataset: str = None,
valid_dataset: str = None,
dataset_sink_mode=True, dataset_sink_step=1,
seq_length=51, vocab_size=32320, hidden_size=1024,
num_hidden_layers=4, intermediate_size=4096,
hidden_act="tanh",
hidden_dropout_prob=0.2, attention_dropout_prob=0.2,
initializer_range=0.1,
label_smoothing=0.1,
beam_width=5,
length_penalty_weight=1.0,
max_decode_length=50,
input_mask_from_dataset=False,
init_loss_scale=2 ** 10,
loss_scale_factor=2, scale_window=128,
lr_scheduler="", optimizer="adam",
lr=1e-4, min_lr=1e-6,
decay_steps=4, lr_scheduler_power=1,
warmup_lr_remain_steps=0.666, warmup_lr_decay_interval=-1,
decay_start_step=-1, warmup_steps=200,
existed_ckpt="", save_ckpt_steps=2000, keep_ckpt_max=20,
ckpt_prefix="gnmt", ckpt_path: str = None,
save_step=10000,
save_graphs=False,
dtype=mstype.float32):
self.save_graphs = save_graphs
self.random_seed = random_seed
self.modelarts = modelarts
self.save_step = save_step
self.dataset_schema = dataset_schema
self.pre_train_dataset = get_source_list(pre_train_dataset) # type: List[str]
self.fine_tune_dataset = get_source_list(fine_tune_dataset) # type: List[str]
self.valid_dataset = get_source_list(valid_dataset) # type: List[str]
self.test_dataset = get_source_list(test_dataset) # type: List[str]
if not isinstance(epochs, int) and epochs < 0:
raise ValueError("`epoch` must be type of int.")
self.epochs = epochs
self.dataset_sink_mode = dataset_sink_mode
self.dataset_sink_step = dataset_sink_step
self.ckpt_path = ckpt_path
self.keep_ckpt_max = keep_ckpt_max
self.save_ckpt_steps = save_ckpt_steps
self.ckpt_prefix = ckpt_prefix
self.existed_ckpt = existed_ckpt
self.batch_size = batch_size
self.seq_length = seq_length
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_dropout_prob = attention_dropout_prob
self.initializer_range = initializer_range
self.label_smoothing = label_smoothing
self.beam_width = beam_width
self.length_penalty_weight = length_penalty_weight
self.max_decode_length = max_decode_length
self.input_mask_from_dataset = input_mask_from_dataset
self.compute_type = mstype.float16
self.dtype = dtype
self.scale_window = scale_window
self.loss_scale_factor = loss_scale_factor
self.init_loss_scale = init_loss_scale
self.optimizer = optimizer
self.lr = lr
self.lr_scheduler = lr_scheduler
self.min_lr = min_lr
self.lr_scheduler_power = lr_scheduler_power
self.warmup_lr_remain_steps = warmup_lr_remain_steps
self.warmup_lr_decay_interval = warmup_lr_decay_interval
self.decay_steps = decay_steps
self.decay_start_step = decay_start_step
self.warmup_steps = warmup_steps
self.train_url = ""
@classmethod
def from_dict(cls, json_object: dict):
"""Constructs a `TransformerConfig` from a Python dictionary of parameters."""
_params = {}
for node in PARAM_NODES:
for key in json_object[node]:
_params[key] = json_object[node][key]
return cls(**_params)
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `TransformerConfig` from a json file of parameters."""
with open(json_file, "r") as reader:
return cls.from_dict(json.load(reader))
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"

@ -0,0 +1,55 @@
{
"training_platform": {
"modelarts": false
},
"dataset_config": {
"random_seed": 50,
"epochs": 6,
"batch_size": 128,
"dataset_schema": "/home/workspace/dataset_menu/newstest2014.en.json",
"pre_train_dataset": null,
"fine_tune_dataset": null,
"test_dataset": "/home/workspace/dataset_menu/newstest2014.en.tfrecord-001-of-001",
"valid_dataset": null,
"dataset_sink_mode": true,
"dataset_sink_step": 2
},
"model_config": {
"seq_length": 107,
"vocab_size": 32320,
"hidden_size": 1024,
"num_hidden_layers": 4,
"intermediate_size": 4096,
"hidden_dropout_prob": 0.2,
"attention_dropout_prob": 0.2,
"initializer_range": 0.1,
"label_smoothing": 0.1,
"beam_width": 2,
"length_penalty_weight": 0.6,
"max_decode_length": 80
},
"loss_scale_config": {
"init_loss_scale": 8192,
"loss_scale_factor": 2,
"scale_window": 128
},
"learn_rate_config": {
"optimizer": "adam",
"lr": 2e-3,
"lr_scheduler": "WarmupMultiStepLR",
"lr_scheduler_power": 0.5,
"warmup_lr_remain_steps": 0.666,
"warmup_lr_decay_interval": -1,
"decay_steps": 4,
"decay_start_step": -1,
"warmup_steps": 200,
"min_lr": 1e-6
},
"checkpoint_options": {
"existed_ckpt": "/home/workspace/gnmt_v2/gnmt-6_3452.ckpt",
"save_ckpt_steps": 3452,
"keep_ckpt_max": 6,
"ckpt_prefix": "gnmt",
"ckpt_path": "text_translation"
}
}

@ -0,0 +1,75 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Create Dataset."""
import os
import argparse
from src.dataset.bi_data_loader import BiLingualDataLoader, TextDataLoader
from src.dataset.tokenizer import Tokenizer
parser = argparse.ArgumentParser(description='Generate dataset file.')
parser.add_argument("--src_folder", type=str, default="/home/workspace/wmt16_de_en", required=False,
help="Raw corpus folder.")
parser.add_argument("--output_folder", type=str, default="/home/workspace/dataset_menu",
required=False,
help="Dataset output path.")
if __name__ == '__main__':
args, _ = parser.parse_known_args()
if not os.path.exists(args.output_folder):
os.makedirs(args.output_folder)
dicts = []
train_src_file = "train.tok.clean.bpe.32000.en"
train_tgt_file = "train.tok.clean.bpe.32000.de"
test_src_file = "newstest2014.en"
test_tgt_file = "newstest2014.de"
vocab = args.src_folder + "/vocab.bpe.32000"
bpe_codes = args.src_folder + "/bpe.32000"
pad_vocab = 8
tokenizer = Tokenizer(vocab, bpe_codes, src_en='en', tgt_de='de', vocab_pad=pad_vocab)
test = TextDataLoader(
src_filepath=os.path.join(args.src_folder, test_src_file),
tokenizer=tokenizer,
source_max_sen_len=None,
schema_address=args.output_folder + "/" + test_src_file + ".json"
)
print(f" | It's writing, please wait a moment.")
test.write_to_tfrecord(
path=os.path.join(
args.output_folder,
os.path.basename(test_src_file) + ".tfrecord"
)
)
train = BiLingualDataLoader(
src_filepath=os.path.join(args.src_folder, train_src_file),
tgt_filepath=os.path.join(args.src_folder, train_tgt_file),
tokenizer=tokenizer,
source_max_sen_len=51,
target_max_sen_len=50,
schema_address=args.output_folder + "/" + train_src_file + ".json"
)
print(f" | It's writing, please wait a moment.")
train.write_to_tfrecord(
path=os.path.join(
args.output_folder,
os.path.basename(train_src_file) + ".tfrecord"
)
)
print(f" | Vocabulary size: {tokenizer.vocab_size}.")

@ -0,0 +1,62 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Evaluation api."""
import argparse
import pickle
from mindspore.common import dtype as mstype
from config import GNMTConfig
from src.gnmt_model import infer
from src.gnmt_model.bleu_calculate import bleu_calculate
from src.dataset.tokenizer import Tokenizer
parser = argparse.ArgumentParser(description='gnmt')
parser.add_argument("--config", type=str, required=True,
help="model config json file path.")
parser.add_argument("--vocab", type=str, required=True,
help="Vocabulary to use.")
parser.add_argument("--bpe_codes", type=str, required=True,
help="bpe codes to use.")
parser.add_argument("--test_tgt", type=str, required=False,
default=None,
help="data file of the test target")
parser.add_argument("--output", type=str, required=False,
default="./output.npz",
help="result file path.")
def get_config(config):
config = GNMTConfig.from_json_file(config)
config.compute_type = mstype.float16
config.dtype = mstype.float32
return config
if __name__ == '__main__':
args, _ = parser.parse_known_args()
_config = get_config(args.config)
result = infer(_config)
with open(args.output, "wb") as f:
pickle.dump(result, f, 1)
result_npy_addr = args.output
vocab = args.vocab
bpe_codes = args.bpe_codes
test_tgt = args.test_tgt
tokenizer = Tokenizer(vocab, bpe_codes, 'en', 'de')
scores = bleu_calculate(tokenizer, result_npy_addr, test_tgt)
print(f"BLEU scores is :{scores}")

@ -0,0 +1,6 @@
nltk
jieba
numpy
subword-nmt==0.3.7
sacrebleu==1.2.10
sacremoses==0.0.19

@ -0,0 +1,39 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
current_exec_path=$(pwd)
echo ${current_exec_path}
export RANK_TABLE_FILE=/home/workspace/rank_table_8p.json
export MINDSPORE_HCCL_CONFIG_PATH=/home/workspace/rank_table_8p.json
echo $RANK_TABLE_FILE
export RANK_SIZE=8
for((i=0;i<=7;i++));
do
rm -rf ${current_exec_path}/device$i
mkdir ${current_exec_path}/device$i
cd ${current_exec_path}/device$i || exit
cp ../../*.py .
cp ../../*.sh .
cp -r ../../src .
cp -r ../../config .
export RANK_ID=$i
export DEVICE_ID=$i
python ../../train.py --config /home/workspace/gnmt_v2/config/config.json > log_gnmt_network${i}.log 2>&1 &
cd ${current_exec_path} || exit
done
cd ${current_exec_path} || exit

@ -0,0 +1,33 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
export DEVICE_NUM=1
export DEVICE_ID=5
export RANK_ID=0
export RANK_SIZE=1
if [ -d "eval" ];
then
rm -rf ./eval
fi
mkdir ./eval
cp ../*.py ./eval
cp -r ../src ./eval
cp -r ../config ./eval
cd ./eval || exit
echo "start eval for device $DEVICE_ID"
env > env.log
python eval.py --config /home/workspace/gnmt_v2/config/config_test.json --vocab /home/workspace/wmt16_de_en/vocab.bpe.32000 --bpe_codes /home/workspace/wmt16_de_en/bpe.32000 --test_tgt /home/workspace/wmt16_de_en/newstest2014.de >log_infer.log 2>&1 &
cd ..

@ -0,0 +1,33 @@
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
export DEVICE_NUM=1
export DEVICE_ID=4
export RANK_ID=0
export RANK_SIZE=1
if [ -d "train" ];
then
rm -rf ./train
fi
mkdir ./train
cp ../*.py ./train
cp -r ../src ./train
cp -r ../config ./train
cd ./train || exit
echo "start training for device $DEVICE_ID"
env > env.log
python train.py --config /home/workspace/gnmt_v2/config/config.json > log_gnmt_network.log 2>&1 &
cd ..

@ -0,0 +1,29 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""GNMTv2 Init."""
from .dataset import load_dataset
from .dataset import bi_data_loader
from .gnmt_model import GNMT, infer, GNMTNetworkWithLoss, GNMTTrainOneStepWithLossScaleCell
from .gnmt_model import LabelSmoothedCrossEntropyCriterion
__all__ = [
"load_dataset",
"bi_data_loader",
"GNMT",
"infer",
"GNMTNetworkWithLoss",
"GNMTTrainOneStepWithLossScaleCell",
"LabelSmoothedCrossEntropyCriterion"
]

@ -0,0 +1,25 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Dataset Init."""
from .bi_data_loader import BiLingualDataLoader, TextDataLoader
from .load_dataset import load_dataset
from .tokenizer import Tokenizer
__all__ = [
"load_dataset",
"BiLingualDataLoader",
"TextDataLoader",
"Tokenizer"
]

@ -0,0 +1,102 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Base class of data loader."""
import os
import collections
import numpy as np
from mindspore.mindrecord import FileWriter
from .schema import SCHEMA
class DataLoader:
"""Data loader for dataset."""
_SCHEMA = SCHEMA
def __init__(self):
self._examples = []
def _load(self):
raise NotImplementedError
def padding(self, sen, padding_idx, need_sentence_len=None, dtype=np.int64):
"""Padding <pad> to sentence."""
if need_sentence_len is None:
return None
if sen.shape[0] > need_sentence_len:
return None
new_sen = np.array([padding_idx] * need_sentence_len, dtype=dtype)
new_sen[:sen.shape[0]] = sen[:]
return new_sen
def write_to_mindrecord(self, path, shard_num=1, desc=""):
"""
Write mindrecord file.
Args:
path (str): File path.
shard_num (int): Shard num.
desc (str): Description.
"""
if not os.path.isabs(path):
path = os.path.abspath(path)
writer = FileWriter(file_name=path, shard_num=shard_num)
writer.add_schema(self._SCHEMA, desc)
if not self._examples:
self._load()
writer.write_raw_data(self._examples)
writer.commit()
print(f"| Wrote to {path}.")
def write_to_tfrecord(self, path, shard_num=1):
"""
Write to tfrecord.
Args:
path (str): Output file path.
shard_num (int): Shard num.
"""
import tensorflow as tf
if not os.path.isabs(path):
path = os.path.abspath(path)
output_files = []
for i in range(shard_num):
output_file = path + "-%03d-of-%03d" % (i + 1, shard_num)
output_files.append(output_file)
# create writers
writers = []
for output_file in output_files:
writers.append(tf.io.TFRecordWriter(output_file))
if not self._examples:
self._load()
# create feature
features = collections.OrderedDict()
for example in self._examples:
for key in example:
features[key] = tf.train.Feature(int64_list=tf.train.Int64List(value=example[key].tolist()))
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
for writer in writers:
writer.write(tf_example.SerializeToString())
for writer in writers:
writer.close()
for p in output_files:
print(f" | Write to {p}.")
def _add_example(self, example):
self._examples.append(example)

@ -0,0 +1,233 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Bilingual data loader."""
import numpy as np
from .base import DataLoader
from .tokenizer import Tokenizer
class BiLingualDataLoader(DataLoader):
"""Loader for bilingual data."""
def __init__(self,
src_filepath: str,
tgt_filepath: str,
tokenizer: Tokenizer,
min_sen_len=0,
source_max_sen_len=None,
target_max_sen_len=80,
schema_address=None):
super(BiLingualDataLoader, self).__init__()
self._src_filepath = src_filepath
self._tgt_filepath = tgt_filepath
self.tokenizer = tokenizer
self.min_sen_len = min_sen_len
self.source_max_sen_len = source_max_sen_len
self.target_max_sen_len = target_max_sen_len
self.schema_address = schema_address
def _load(self):
count = 0
if self.source_max_sen_len is None:
with open(self._src_filepath, "r") as _src_file:
print(f" | count the max_sen_len of corpus {self._src_filepath}.")
max_src = 0
for _, _pair in enumerate(_src_file):
src_tokens = [
int(self.tokenizer.tok2idx[t])
for t in _pair.strip().split(" ") if t
]
src_len = len(src_tokens)
if src_len > max_src:
max_src = src_len
self.source_max_sen_len = max_src + 2
if self.target_max_sen_len is None:
with open(self._src_filepath, "r") as _tgt_file:
print(f" | count the max_sen_len of corpus {self._src_filepath}.")
max_tgt = 0
for _, _pair in enumerate(_tgt_file):
src_tokens = [
int(self.tokenizer.tok2idx[t])
for t in _pair.strip().split(" ") if t
]
tgt_len = len(src_tokens)
if tgt_len > max_tgt:
max_tgt = tgt_len
self.target_max_sen_len = max_tgt + 1
with open(self._src_filepath, "r") as _src_file:
print(f" | Processing corpus {self._src_filepath}.")
print(f" | Processing corpus {self._tgt_filepath}.")
with open(self._tgt_filepath, "r") as _tgt_file:
for _, _pair in enumerate(zip(_src_file, _tgt_file)):
src_tokens = [
int(self.tokenizer.tok2idx[t])
for t in _pair[0].strip().split(" ") if t
]
tgt_tokens = [
int(self.tokenizer.tok2idx[t])
for t in _pair[1].strip().split(" ") if t
]
src_tokens.insert(0, self.tokenizer.bos_index)
src_tokens.append(self.tokenizer.eos_index)
tgt_tokens.insert(0, self.tokenizer.bos_index)
tgt_tokens.append(self.tokenizer.eos_index)
src_tokens = np.array(src_tokens)
tgt_tokens = np.array(tgt_tokens)
src_len = src_tokens.shape[0]
tgt_len = tgt_tokens.shape[0]
if (src_len > self.source_max_sen_len) or (src_len < self.min_sen_len) or (
tgt_len > (self.target_max_sen_len + 1)) or (tgt_len < self.min_sen_len):
print(f"+++++ delete! src_len={src_len}, tgt_len={tgt_len - 1}, "
f"source_max_sen_len={self.source_max_sen_len},"
f"target_max_sen_len={self.target_max_sen_len}")
continue
# encoder inputs
encoder_input = self.padding(src_tokens, self.tokenizer.padding_index, self.source_max_sen_len)
src_padding = np.zeros(shape=self.source_max_sen_len, dtype=np.int64)
for i in range(src_len):
src_padding[i] = 1
src_length = np.array([src_len], dtype=np.int64)
# decoder inputs
decoder_input = self.padding(tgt_tokens[:-1], self.tokenizer.padding_index, self.target_max_sen_len)
# decoder outputs
decoder_output = self.padding(tgt_tokens[1:], self.tokenizer.padding_index, self.target_max_sen_len)
tgt_padding = np.zeros(shape=self.target_max_sen_len + 1, dtype=np.int64)
for j in range(tgt_len):
tgt_padding[j] = 1
tgt_padding = tgt_padding[1:]
decoder_input = np.array(decoder_input, dtype=np.int64)
decoder_output = np.array(decoder_output, dtype=np.int64)
tgt_padding = np.array(tgt_padding, dtype=np.int64)
example = {
"src": encoder_input,
"src_padding": src_padding,
"src_length": src_length,
"prev_opt": decoder_input,
"target": decoder_output,
"tgt_padding": tgt_padding
}
self._add_example(example)
count += 1
print(f" | source padding_len = {self.source_max_sen_len}.")
print(f" | target padding_len = {self.target_max_sen_len}.")
print(f" | Total activate sen = {count}.")
print(f" | Total sen = {count}.")
if self.schema_address is not None:
provlist = [count, self.source_max_sen_len, self.source_max_sen_len, 1,
self.target_max_sen_len, self.target_max_sen_len, self.target_max_sen_len]
columns = ["src", "src_padding", "src_length", "prev_opt", "target", "tgt_padding"]
with open(self.schema_address, "w", encoding="utf-8") as f:
f.write("{\n")
f.write(' "datasetType":"TF",\n')
f.write(' "numRows":%s,\n' % provlist[0])
f.write(' "columns":{\n')
t = 1
for name in columns:
f.write(' "%s":{\n' % name)
f.write(' "type":"int64",\n')
f.write(' "rank":1,\n')
f.write(' "shape":[%s]\n' % provlist[t])
f.write(' }')
if t < len(columns):
f.write(',')
f.write('\n')
t += 1
f.write(' }\n}\n')
print(" | Write to " + self.schema_address)
class TextDataLoader(DataLoader):
"""Loader for text data."""
def __init__(self,
src_filepath: str,
tokenizer: Tokenizer,
min_sen_len=0,
source_max_sen_len=None,
schema_address=None):
super(TextDataLoader, self).__init__()
self._src_filepath = src_filepath
self.tokenizer = tokenizer
self.min_sen_len = min_sen_len
self.source_max_sen_len = source_max_sen_len
self.schema_address = schema_address
def _load(self):
count = 0
if self.source_max_sen_len is None:
with open(self._src_filepath, "r") as _src_file:
print(f" | count the max_sen_len of corpus {self._src_filepath}.")
max_src = 0
for _, _pair in enumerate(_src_file):
src_tokens = self.tokenizer.tokenize(_pair)
src_len = len(src_tokens)
if src_len > max_src:
max_src = src_len
self.source_max_sen_len = max_src
with open(self._src_filepath, "r") as _src_file:
print(f" | Processing corpus {self._src_filepath}.")
for _, _pair in enumerate(_src_file):
src_tokens = self.tokenizer.tokenize(_pair)
src_len = len(src_tokens)
src_tokens = np.array(src_tokens)
# encoder inputs
encoder_input = self.padding(src_tokens, self.tokenizer.padding_index, self.source_max_sen_len)
src_padding = np.zeros(shape=self.source_max_sen_len, dtype=np.int64)
for i in range(src_len):
src_padding[i] = 1
src_length = np.array([src_len], dtype=np.int64)
example = {
"src": encoder_input,
"src_padding": src_padding,
"src_length": src_length
}
self._add_example(example)
count += 1
print(f" | source padding_len = {self.source_max_sen_len}.")
print(f" | Total activate sen = {count}.")
print(f" | Total sen = {count}.")
if self.schema_address is not None:
provlist = [count, self.source_max_sen_len, self.source_max_sen_len, 1]
columns = ["src", "src_padding", "src_length"]
with open(self.schema_address, "w", encoding="utf-8") as f:
f.write("{\n")
f.write(' "datasetType":"TF",\n')
f.write(' "numRows":%s,\n' % provlist[0])
f.write(' "columns":{\n')
t = 1
for name in columns:
f.write(' "%s":{\n' % name)
f.write(' "type":"int64",\n')
f.write(' "rank":1,\n')
f.write(' "shape":[%s]\n' % provlist[t])
f.write(' }')
if t < len(columns):
f.write(',')
f.write('\n')
t += 1
f.write(' }\n}\n')
print(" | Write to " + self.schema_address)

@ -0,0 +1,147 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Dataset loader to feed into model."""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.c_transforms as deC
def _load_dataset(input_files, schema_file, batch_size, epoch_count=1,
sink_mode=False, sink_step=1, rank_size=1, rank_id=0, shuffle=True,
drop_remainder=True, is_translate=False):
"""
Load dataset according to passed in params.
Args:
input_files (list): Data files.
schema_file (str): Schema file path.
batch_size (int): Batch size.
epoch_count (int): Epoch count.
sink_mode (bool): Whether enable sink mode.
sink_step (int): Step to sink.
rank_size (int): Rank size.
rank_id (int): Rank id.
shuffle (bool): Whether shuffle dataset.
drop_remainder (bool): Whether drop the last possibly incomplete batch.
is_translate (bool): Whether translate the text.
Returns:
Dataset, dataset instance.
"""
if not input_files:
raise FileNotFoundError("Require at least one dataset.")
if not (schema_file and
os.path.exists(schema_file)
and os.path.isfile(schema_file)
and os.path.basename(schema_file).endswith(".json")):
raise FileNotFoundError("`dataset_schema` must be a existed json file.")
if not isinstance(sink_mode, bool):
raise ValueError("`sink` must be type of bool.")
for datafile in input_files:
print(f" | Loading {datafile}.")
if not is_translate:
ds = de.TFRecordDataset(
input_files, schema_file,
columns_list=[
"src", "src_padding", "src_length",
"prev_opt",
"target", "tgt_padding"
],
shuffle=shuffle, num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True, num_parallel_workers=8)
ori_dataset_size = ds.get_dataset_size()
print(f" | Dataset size: {ori_dataset_size}.")
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(input_columns="src", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="src_padding", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="src_length", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="prev_opt", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="target", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="tgt_padding", operations=type_cast_op, num_parallel_workers=8)
ds = ds.rename(
input_columns=["src",
"src_padding",
"src_length",
"prev_opt",
"target",
"tgt_padding"],
output_columns=["source_eos_ids",
"source_eos_mask",
"source_eos_length",
"target_sos_ids",
"target_eos_ids",
"target_eos_mask"]
)
ds = ds.batch(batch_size, drop_remainder=drop_remainder)
else:
ds = de.TFRecordDataset(
input_files, schema_file,
columns_list=[
"src", "src_padding", "src_length"
],
shuffle=shuffle, num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True, num_parallel_workers=8)
ori_dataset_size = ds.get_dataset_size()
print(f" | Dataset size: {ori_dataset_size}.")
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(input_columns="src", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="src_padding", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="src_length", operations=type_cast_op, num_parallel_workers=8)
ds = ds.rename(
input_columns=["src",
"src_padding",
"src_length"],
output_columns=["source_eos_ids",
"source_eos_mask",
"source_eos_length"]
)
ds = ds.batch(batch_size, drop_remainder=drop_remainder)
return ds
def load_dataset(data_files: list, schema: str, batch_size: int, epoch_count: int, sink_mode: bool, sink_step: int = 1,
rank_size: int = 1, rank_id: int = 0, shuffle=True, drop_remainder=True, is_translate=False):
"""
Load dataset.
Args:
data_files (list): Data files.
schema (str): Schema file path.
batch_size (int): Batch size.
epoch_count (int): Epoch count.
sink_mode (bool): Whether enable sink mode.
sink_step (int): Step to sink.
rank_size (int): Rank size.
rank_id (int): Rank id.
shuffle (bool): Whether shuffle dataset.
Returns:
Dataset, dataset instance.
"""
return _load_dataset(data_files, schema, batch_size, epoch_count, sink_mode,
sink_step, rank_size, rank_id, shuffle=shuffle,
drop_remainder=drop_remainder, is_translate=is_translate)

@ -0,0 +1,24 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Define schema of mindrecord."""
SCHEMA = {
"src": {"type": "int64", "shape": [-1]},
"src_padding": {"type": "int64", "shape": [-1]},
"src_length": {"type": "int64", "shape": [-1]},
"prev_opt": {"type": "int64", "shape": [-1]},
"target": {"type": "int64", "shape": [-1]},
"tgt_padding": {"type": "int64", "shape": [-1]},
}

@ -0,0 +1,101 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Tokenizer."""
import os
from collections import defaultdict
from functools import partial
import subword_nmt.apply_bpe
import sacremoses
class Tokenizer:
"""
Tokenizer class.
"""
def __init__(self, vocab_address=None, bpe_code_address=None,
src_en='en', tgt_de='de', vocab_pad=8, isolator='@@'):
"""
Constructor for the Tokenizer class.
Args:
vocab_address: vocabulary address.
bpe_code_address: path to the file with bpe codes.
vocab_pad: pads vocabulary to a multiple of 'vocab_pad' tokens.
isolator: tokenization isolator.
"""
self.padding_index = 0
self.unk_index = 1
self.bos_index = 2
self.eos_index = 3
self.pad_word = '<pad>'
self.unk_word = '<unk>'
self.bos_word = '<s>'
self.eos_word = r'<\s>'
self.isolator = isolator
self.init_bpe(bpe_code_address)
self.vocab_establist(vocab_address, vocab_pad)
self.sacremoses_tokenizer = sacremoses.MosesTokenizer(src_en)
self.sacremoses_detokenizer = sacremoses.MosesDetokenizer(tgt_de)
def init_bpe(self, bpe_code_address):
"""Init bpe."""
if (bpe_code_address is not None) and os.path.exists(bpe_code_address):
with open(bpe_code_address, 'r') as f1:
self.bpe = subword_nmt.apply_bpe.BPE(f1)
def vocab_establist(self, vocab_address, vocab_pad):
"""Establish vocabulary."""
if (vocab_address is None) or (not os.path.exists(vocab_address)):
return
vocab_words = [self.pad_word, self.unk_word, self.bos_word, self.eos_word]
with open(vocab_address) as f1:
for sentence in f1:
vocab_words.append(sentence.strip())
vocab_size = len(vocab_words)
padded_vocab_size = (vocab_size + vocab_pad - 1) // vocab_pad * vocab_pad
for idx in range(0, padded_vocab_size - vocab_size):
fil_token = f'filled{idx:04d}'
vocab_words.append(fil_token)
self.vocab_size = len(vocab_words)
self.tok2idx = defaultdict(partial(int, self.unk_index))
for idx, token in enumerate(vocab_words):
self.tok2idx[token] = idx
self.idx2tok = {}
self.idx2tok = defaultdict(partial(str, ","))
for token, idx in self.tok2idx.items():
self.idx2tok[idx] = token
def tokenize(self, sentence):
"""Tokenize sentence."""
tokenized = self.sacremoses_tokenizer.tokenize(sentence, return_str=True)
bpe = self.bpe.process_line(tokenized)
sentence = bpe.strip().split()
inputs = [self.tok2idx[i] for i in sentence]
inputs = [self.bos_index] + inputs + [self.eos_index]
return inputs
def detokenize(self, indexes, gap=' '):
"""Detokenizes single sentence and removes token isolator characters."""
reconstruction_bpe = gap.join([self.idx2tok[idx] for idx in indexes])
reconstruction_bpe = reconstruction_bpe.replace(self.isolator + ' ', '')
reconstruction_bpe = reconstruction_bpe.replace(self.isolator, '')
reconstruction_bpe = reconstruction_bpe.replace(self.bos_word, '')
reconstruction_bpe = reconstruction_bpe.replace(self.eos_word, '')
reconstruction_bpe = reconstruction_bpe.replace(self.unk_word, '')
reconstruction_bpe = reconstruction_bpe.replace(self.pad_word, '')
reconstruction_bpe = reconstruction_bpe.strip()
reconstruction_words = self.sacremoses_detokenizer.detokenize(reconstruction_bpe.split())
return reconstruction_words

@ -0,0 +1,34 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""GNMTv2 Init."""
from config.config import GNMTConfig
from .gnmt import GNMT
from .attention import BahdanauAttention
from .gnmt_for_train import GNMTTraining, LabelSmoothedCrossEntropyCriterion, \
GNMTNetworkWithLoss, GNMTTrainOneStepWithLossScaleCell
from .gnmt_for_infer import infer
from .bleu_calculate import bleu_calculate
__all__ = [
"infer",
"GNMTTraining",
"LabelSmoothedCrossEntropyCriterion",
"GNMTTrainOneStepWithLossScaleCell",
"GNMTNetworkWithLoss",
"GNMT",
"BahdanauAttention",
"GNMTConfig",
"bleu_calculate"
]

@ -0,0 +1,201 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Bahdanau attention block."""
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.ops.operations as P
from mindspore import nn
from mindspore.common.tensor import Tensor
from mindspore.common.parameter import Parameter
from mindspore.common.initializer import Uniform
INF = 65504.0
class BahdanauAttention(nn.Cell):
"""
Constructor for the BahdanauAttention.
Args:
is_training (bool): Whether to train.
query_size (int): feature dimension for query.
key_size (int): feature dimension for keys.
num_units (int): internal feature dimension.
normalize (bool): Whether to normalize.
initializer_range: range for uniform initializer parameters.
Returns:
Tensor, shape (N, T, D).
"""
def __init__(self,
is_training,
query_size,
key_size,
num_units,
normalize=False,
initializer_range=0.1,
compute_type=mstype.float16):
super(BahdanauAttention, self).__init__()
self.is_training = is_training
self.mask = None
self.query_size = query_size
self.key_size = key_size
self.normalize = normalize
self.num_units = num_units
self.linear_att = Parameter(Tensor(np.random.uniform(-initializer_range, initializer_range, size=[num_units]),
dtype=mstype.float32), name='linear_att')
if self.normalize:
self.normalize_scalar = Parameter(Tensor(np.array([1.0 / num_units]), dtype=mstype.float32),
name='normalize_scalar')
self.normalize_bias = Parameter(Tensor(np.zeros(num_units), dtype=mstype.float32), name='normalize_bias')
self.transpose = P.Transpose()
self.transpose_orders = (1, 0, 2)
self.shape_op = P.Shape()
self.linear_q = nn.Dense(query_size,
num_units,
has_bias=False,
weight_init=Uniform(initializer_range)).to_float(compute_type)
self.linear_k = nn.Dense(key_size,
num_units,
has_bias=False,
weight_init=Uniform(initializer_range)).to_float(compute_type)
self.expand = P.ExpandDims()
self.tile = P.Tile()
self.norm = nn.Norm(axis=-1)
self.mul = P.Mul()
self.matmul = P.MatMul()
self.batchMatmul = P.BatchMatMul()
self.tanh = nn.Tanh()
self.matmul_trans_b = P.BatchMatMul(transpose_b=True)
self.softmax = nn.Softmax(axis=-1)
self.reshape = P.Reshape()
self.cast = P.Cast()
def construct(self, query, keys, attention_mask=None):
"""
Construct attention block.
Args:
query (Tensor): Shape (t_q, N, D).
keys (Tensor): Shape (t_k, N, D).
attention_mask: Shape(N, t_k).
Returns:
Tensor, shape (N, t_q, D).
"""
# (t_k, N, D) -> (N, t_k, D).
keys = self.transpose(keys, self.transpose_orders)
# (t_q, N, D) -> (N, t_q, D).
query = self.transpose(query, self.transpose_orders)
query_shape = self.shape_op(query)
b = query_shape[0]
t_q = query_shape[1]
t_k = self.shape_op(keys)[1]
# (N, t_q, D)
query = self.reshape(query, (b * t_q, self.query_size))
if self.is_training:
query = self.cast(query, mstype.float16)
processed_query = self.linear_q(query)
if self.is_trining:
processed_query = self.cast(processed_query, mstype.float32)
processed_query = self.reshape(processed_query, (b, t_q, self.num_units))
# (N, t_k, D)
keys = self.reshape(keys, (b * t_k, self.key_size))
if self.is_training:
keys = self.cast(keys, mstype.float16)
processed_key = self.linear_k(keys)
if self.is_trining:
processed_key = self.cast(processed_key, mstype.float32)
processed_key = self.reshape(processed_key, (b, t_k, self.num_units))
# scores: (N T_q T_k)
scores = self.calc_score(processed_query, processed_key)
# attention_mask: (N, T_k)
mask = attention_mask
# [N 1]
if mask is not None:
mask = 1.0 - mask
mask = self.tile(self.expand(mask, 1), (1, t_q, 1))
scores += mask * (-INF)
# [b, t_q, t_k]
scores_normalized = self.softmax(scores)
keys = self.reshape(keys, (b, t_k, self.key_size))
if self.is_training:
keys = self.cast(keys, mstype.float16)
scores_normalized_fp16 = self.cast(scores_normalized, mstype.float16)
else:
scores_normalized_fp16 = scores_normalized
# (b, t_q, n)
context_attention = self.batchMatmul(scores_normalized_fp16, keys)
# [t_q,b,D]
context_attention = self.transpose(context_attention, self.transpose_orders)
if self.is_training:
context_attention = self.cast(context_attention, mstype.float32)
return context_attention, scores_normalized
def calc_score(self, att_query, att_keys):
"""
Calculate Bahdanau score
Args:
att_query: (N, T_q, D).
att_keys: (N, T_k, D).
returns:
scores: (N, T_q, T_k).
"""
b, t_k, n = self.shape_op(att_keys)
t_q = self.shape_op(att_query)[1]
# (b, t_q, t_k, n)
att_query = self.tile(self.expand(att_query, 2), (1, 1, t_k, 1))
att_keys = self.tile(self.expand(att_keys, 1), (1, t_q, 1, 1))
# (b, t_q, t_k, n)
sum_qk = att_query + att_keys
if self.normalize:
# (b, t_q, t_k, n)
sum_qk = sum_qk + self.normalize_bias
linear_att = self.linear_att / self.norm(self.linear_att)
linear_att = self.cast(linear_att, mstype.float32)
linear_att = self.mul(linear_att, self.normalize_scalar)
else:
linear_att = self.linear_att
linear_att = self.expand(linear_att, -1)
sum_qk = self.reshape(sum_qk, (-1, n))
tanh_sum_qk = self.tanh(sum_qk)
if self.is_training:
linear_att = self.cast(linear_att, mstype.float16)
tanh_sum_qk = self.cast(tanh_sum_qk, mstype.float16)
out = self.matmul(tanh_sum_qk, linear_att)
# (b, t_q, t_k)
out = self.reshape(out, (b, t_q, t_k))
if self.is_training:
out = self.cast(out, mstype.float32)
return out

@ -0,0 +1,93 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Calculate the blue scores"""
import subprocess
import numpy as np
from src.dataset.tokenizer import Tokenizer
def load_result_data(result_npy_addr):
# load the numpy to list.
result = np.load(result_npy_addr, allow_pickle=True)
return result
def get_bleu_data(tokenizer: Tokenizer, result_npy_addr):
"""
Detokenizer the prediction.
Args:
tokenizer (Tokenizer): tokenizer operations.
result_npy_addr (string): Path to the predict file.
Returns:
List, the predict text context.
"""
result = load_result_data(result_npy_addr)
prediction_list = []
for _, info in enumerate(result):
# prediction detokenize
prediction = info["prediction"]
prediction_str = tokenizer.detokenize(prediction)
prediction_list.append(prediction_str)
return prediction_list
def calculate_sacrebleu(predict_path, target_path):
"""
Calculate the BLEU scores.
Args:
predict_path (string): Path to the predict file.
target_path (string): Path to the target file.
Returns:
Float32, bleu scores.
"""
sacrebleu_params = '--score-only -lc --tokenize intl'
sacrebleu = subprocess.run([f'sacrebleu --input {predict_path} \
{target_path} {sacrebleu_params}'],
stdout=subprocess.PIPE, shell=True)
bleu_scores = round(float(sacrebleu.stdout.strip()), 2)
return bleu_scores
def bleu_calculate(tokenizer, result_npy_addr, target_addr=None):
"""
Calculate the BLEU scores.
Args:
tokenizer (Tokenizer): tokenizer operations.
result_npy_addr (string): Path to the predict file.
target_addr (string): Path to the target file.
Returns:
Float32, bleu scores.
"""
prediction = get_bleu_data(tokenizer, result_npy_addr)
print("predict:\n", prediction)
eval_path = './predict.txt'
with open(eval_path, 'w') as eval_file:
lines = [line + '\n' for line in prediction]
eval_file.writelines(lines)
reference_path = target_addr
bleu_scores = calculate_sacrebleu(eval_path, reference_path)
return bleu_scores

@ -0,0 +1,67 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Components of model."""
import mindspore.common.dtype as mstype
import mindspore.nn as nn
from mindspore.ops import operations as P
class SaturateCast(nn.Cell):
"""Cast wrapper."""
def __init__(self, dst_type=mstype.float32):
super(SaturateCast, self).__init__()
self.cast = P.Cast()
self.dst_type = dst_type
def construct(self, x):
return self.cast(x, self.dst_type)
class LayerNorm(nn.Cell):
"""
Do layer norm.
Args:
in_channels (int): In channels number of layer norm.
return_2d (bool): Whether return 2d tensor.
Returns:
Tensor, output.
"""
def __init__(self, in_channels=None, return_2d=False):
super(LayerNorm, self).__init__()
self.return_2d = return_2d
self.layer_norm = nn.LayerNorm((in_channels,))
self.cast = P.Cast()
self.get_dtype = P.DType()
self.reshape = P.Reshape()
self.get_shape = P.Shape()
def construct(self, input_tensor):
"""Do layer norm."""
shape = self.get_shape(input_tensor)
batch_size = shape[0]
max_len = shape[1]
embed_dim = shape[2]
output = self.reshape(input_tensor, (-1, embed_dim))
output = self.cast(output, mstype.float32)
output = self.layer_norm(output)
output = self.cast(output, self.get_dtype(input_tensor))
if not self.return_2d:
output = self.reshape(output, (batch_size, max_len, embed_dim))
return output

@ -0,0 +1,67 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Create attention block."""
import mindspore.common.dtype as mstype
from mindspore import nn
from .attention import BahdanauAttention
class RecurrentAttention(nn.Cell):
"""
Constructor for the RecurrentAttention.
Args:
input_size: number of features in input tensor.
context_size: number of features in output from encoder.
hidden_size: internal hidden size.
num_layers: number of layers in LSTM.
dropout: probability of dropout (on input to LSTM layer).
initializer_range: range for the uniform initializer.
Returns:
Tensor, shape (N, T, D).
"""
def __init__(self,
rnn,
is_training=True,
input_size=1024,
context_size=1024,
hidden_size=1024,
num_layers=1,
dropout=0.2,
initializer_range=0.1):
super(RecurrentAttention, self).__init__()
self.dropout = nn.Dropout(keep_prob=1.0 - dropout)
self.rnn = rnn
self.attn = BahdanauAttention(is_training=is_training,
query_size=hidden_size,
key_size=hidden_size,
num_units=hidden_size,
normalize=True,
initializer_range=initializer_range,
compute_type=mstype.float16)
def construct(self, decoder_embedding, context_key, attention_mask=None, rnn_init_state=None):
# decoder_embedding: [t_q,N,D]
# context: [t_k,N,D]
# attention_mask: [N,t_k]
# [t_q,N,D]
decoder_embedding = self.dropout(decoder_embedding)
rnn_outputs, rnn_state = self.rnn(decoder_embedding, rnn_init_state)
# rnn_outputs:[t_q,b,D], attn_outputs:[t_q,b,D], scores:[b, t_q, t_k], rnn_state:tuple([2,b,D]).
attn_outputs, scores = self.attn(query=rnn_outputs, keys=context_key, attention_mask=attention_mask)
return rnn_outputs, attn_outputs, rnn_state, scores

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save