add random_map ops

pull/9462/head
fangzehua 4 years ago
parent b5269d6bd4
commit b8943722c8

@ -0,0 +1,67 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/map_uniform_cpu_kernel.h"
#include <string>
#include <memory>
#include <vector>
#include "runtime/device/cpu/cpu_device_address.h"
namespace mindspore {
namespace kernel {
void MapUniformCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
node_ = kernel_node;
dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0);
}
bool MapUniformCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeInt32) {
LaunchKernel<int>(inputs, outputs);
} else if (dtype_ == kNumberTypeInt64) {
LaunchKernel<int64_t>(inputs, outputs);
} else {
MS_LOG(ERROR) << "Only support int32, int64";
return false;
}
return true;
}
template <typename T>
void MapUniformCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> &outputs) {
auto input_x_shape = AnfAlgo::GetPrevNodeOutputInferShape(node_, 0);
batch_size_ = 1;
for (size_t i = 0; i < input_x_shape.size(); ++i) {
batch_size_ *= input_x_shape[i];
}
MS_LOG(INFO) << "Input size: " << batch_size_;
auto input_x = reinterpret_cast<T *>(inputs[0]->addr);
auto per_group_size = *reinterpret_cast<T *>(inputs[1]->addr);
auto group_num = *reinterpret_cast<T *>(inputs[2]->addr);
auto output_x = reinterpret_cast<T *>(outputs[0]->addr);
T max_num = group_num * per_group_size;
for (size_t i = 0; i < batch_size_; ++i) {
output_x[i] = input_x[i] % group_num * per_group_size + input_x[i] / group_num;
if (output_x[i] >= max_num) {
MS_LOG(EXCEPTION) << "Value can not >= " << max_num;
}
}
}
} // namespace kernel
} // namespace mindspore

@ -0,0 +1,65 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_UNIFORM_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_UNIFORM_CPU_KERNEL_H_
#include <math.h>
#include <vector>
#include <memory>
#include <unordered_map>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
namespace mindspore {
namespace kernel {
class MapUniformCPUKernel : public CPUKernel {
public:
MapUniformCPUKernel() = default;
~MapUniformCPUKernel() override = default;
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs);
private:
size_t batch_size_{1};
TypeId dtype_{kTypeUnknown};
CNodePtr node_ = nullptr;
};
MS_REG_CPU_KERNEL(MapUniform,
KernelAttr()
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddInputAttr(kNumberTypeInt32)
.AddOutputAttr(kNumberTypeInt32),
MapUniformCPUKernel);
MS_REG_CPU_KERNEL(MapUniform,
KernelAttr()
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddInputAttr(kNumberTypeInt64)
.AddOutputAttr(kNumberTypeInt64),
MapUniformCPUKernel);
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MAP_UNIFORM_CPU_KERNEL_H_

@ -267,6 +267,8 @@ AbstractBasePtr InferImplGpuConvertToDynamicShape(const AnalysisEnginePtr &, con
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplPad(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplMapUniform(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplSplit(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list);
AbstractBasePtr InferImplSequenceMask(const AnalysisEnginePtr &, const PrimitivePtr &primitive,

@ -863,6 +863,14 @@ AbstractBasePtr InferImplReshape(const AnalysisEnginePtr &, const PrimitivePtr &
return ret;
}
AbstractBasePtr InferImplMapUniform(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
// Inputs: one tensor.
const std::string op_name = primitive->name();
CheckArgsSize(op_name, args_spec_list, 3);
return args_spec_list[0]->Broaden();
}
AbstractBasePtr InferImplSplit(const AnalysisEnginePtr &, const PrimitivePtr &primitive,
const AbstractBasePtrList &args_spec_list) {
const std::string op_name = primitive->name();

@ -74,6 +74,7 @@ PrimitiveEvalImplMap &GetPrimitiveToEvalImplMap() {
{prim::kPrimDynamicShape, {InferImplDynamicShape, true}},
{prim::kPrimTranspose, {InferImplTranspose, true}},
{prim::kPrimReshape, {InferImplReshape, true}},
{prim::kPrimMapUniform, {InferImplMapUniform, true}},
{prim::kPrimSplit, {InferImplSplit, true}},
{prim::kPrimSequenceMask, {InferImplSequenceMask, true}},
// Structure

@ -119,6 +119,7 @@ inline const PrimitivePtr kPrimDynamicGRUV2 = std::make_shared<Primitive>("Dynam
inline const PrimitivePtr kPrimDynamicGRUV2Grad = std::make_shared<Primitive>("DynamicGRUV2Grad");
inline const PrimitivePtr kPrimScatterAdd = std::make_shared<Primitive>("ScatterAdd");
inline const PrimitivePtr kPrimScatterUpdate = std::make_shared<Primitive>("ScatterUpdate");
inline const PrimitivePtr kPrimMapUniform = std::make_shared<Primitive>("MapUniform");
inline const PrimitivePtr kPrimSplit = std::make_shared<Primitive>("Split");
inline const PrimitivePtr kPrimSequenceMask = std::make_shared<Primitive>("SequenceMask");

@ -90,7 +90,8 @@ from ._thor_ops import (CusBatchMatMul, CusCholeskyTrsm, CusFusedAbsMax1, CusImg
CusMatMulCubeDenseRight,
CusMatMulCubeFraczLeftCast, Im2Col, UpdateThorGradient, Cholesky, CholeskyTrsm, DetTriangle)
from .sparse_ops import SparseToDense
from ._cache_ops import CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter
from ._cache_ops import (CacheSwapHashmap, SearchCacheIdx, CacheSwapTable, UpdateCache, MapCacheIdx, SubAndFilter,
MapUniform)
__all__ = [
'Unique',

@ -187,6 +187,46 @@ class SearchCacheIdx(PrimitiveWithInfer):
return out_dtype
class MapUniform(PrimitiveWithCheck):
"""
Map a tensor by using fomula : value = key % `group_num` * `per_group_size` + key // `group_num`.
Inputs:
- **input** (Tensor) - Input Tensor.
- **per_group_size** (int) - The size of each group.
- **group_num** (int) - The number of group.
Outputs:
Tensor, has the same dtype and shape as the `input`.
Supported Platforms:
`CPU`
Examples:
>>> input_x = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7]))
>>> per_group_size = 4
>>> group_num = 2
>>> map_uniform = ops.MapUniform()
>>> output = map_uniform(input_x, per_group_size, group_num)
>>> print(output)
[0, 4, 1, 5, 2, 6, 3, 7]
"""
@prim_attr_register
def __init__(self):
"""init MapUniform"""
self.init_prim_io_names(inputs=['input', 'per_group_size', 'group_num'],
outputs=['output'])
def check_dtype(self, input_dtype, per_group_size_dtype, group_num_dtype):
validator.check_tensor_dtype_valid(
"input", input_dtype, mstype.int_type, self.name)
validator.check_value_type(
'per_group_size', per_group_size_dtype, [mstype.Int], self.name)
validator.check_value_type(
'group_num', group_num_dtype, [mstype.Int], self.name)
class CacheSwapHashmap(PrimitiveWithInfer):
"""
Delete a hashmap entry,and insert a new key to hashmap, return the key and value of delete entry.

@ -0,0 +1,46 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.map_uniform = P.MapUniform()
self.per_group_size = 4
self.group_num = 2
def construct(self, x):
return self.map_uniform(x, self.per_group_size, self.group_num)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
def test_map_uniform():
x = Tensor(np.array([0, 1, 2, 3, 4, 5, 6, 7]), mstype.int32)
net = Net()
output = net(x)
expect1 = np.array([0, 4, 1, 5, 2, 6, 3, 7])
assert (output.asnumpy() == expect1).all()
Loading…
Cancel
Save