parent
874972caf8
commit
b8d7f6d77f
@ -0,0 +1,118 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "backend/optimizer/ascend/ir_fission/unsorted_segment_sum_fission.h"
|
||||||
|
#include <memory>
|
||||||
|
#include <vector>
|
||||||
|
#include "backend/session/anf_runtime_algorithm.h"
|
||||||
|
#include "ir/primitive.h"
|
||||||
|
#include "utils/utils.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
namespace {
|
||||||
|
CNodePtr CreatePadding(const FuncGraphPtr &graph, const CNodePtr &origin_node, const size_t &pad_dim_size) {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(origin_node);
|
||||||
|
std::vector<AnfNodePtr> padding_inputs = {NewValueNode(std::make_shared<Primitive>(kPaddingOpName)),
|
||||||
|
origin_node->input(1)};
|
||||||
|
auto padding = graph->NewCNode(padding_inputs);
|
||||||
|
MS_EXCEPTION_IF_NULL(padding);
|
||||||
|
padding->set_scope(origin_node->scope());
|
||||||
|
auto shape = AnfAlgo::GetPrevNodeOutputInferShape(origin_node, 0);
|
||||||
|
shape[shape.size() - 1] = pad_dim_size;
|
||||||
|
AnfAlgo::SetOutputInferTypeAndShape({AnfAlgo::GetPrevNodeOutputInferDataType(origin_node, 0)}, {shape},
|
||||||
|
padding.get());
|
||||||
|
AnfAlgo::SetNodeAttr(kAttrPadDimSize, MakeValue(SizeToInt(pad_dim_size)), padding);
|
||||||
|
return padding;
|
||||||
|
}
|
||||||
|
|
||||||
|
CNodePtr CreateUnsortedSegmentSum(const FuncGraphPtr &graph, const CNodePtr &origin_node, const CNodePtr &padding,
|
||||||
|
const size_t &pad_dim_size) {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(origin_node);
|
||||||
|
MS_EXCEPTION_IF_NULL(padding);
|
||||||
|
std::vector<AnfNodePtr> unsorted_segment_sum8_inputs = {
|
||||||
|
NewValueNode(std::make_shared<Primitive>(prim::kPrimUnsortedSegmentSum->name())), padding, origin_node->input(2)};
|
||||||
|
auto unsorted_segment_sum = graph->NewCNode(unsorted_segment_sum8_inputs);
|
||||||
|
MS_EXCEPTION_IF_NULL(unsorted_segment_sum);
|
||||||
|
unsorted_segment_sum->set_scope(origin_node->scope());
|
||||||
|
auto shape = AnfAlgo::GetOutputInferShape(origin_node, 0);
|
||||||
|
shape[shape.size() - 1] = pad_dim_size;
|
||||||
|
AnfAlgo::SetOutputInferTypeAndShape({AnfAlgo::GetOutputInferDataType(origin_node, 0)}, {shape},
|
||||||
|
unsorted_segment_sum.get());
|
||||||
|
AnfAlgo::SetNodeAttr(kAttrNumSegments, MakeValue(SizeToInt(shape[0])), unsorted_segment_sum);
|
||||||
|
return unsorted_segment_sum;
|
||||||
|
}
|
||||||
|
|
||||||
|
CNodePtr CreateSlice(const FuncGraphPtr &graph, const CNodePtr &unsort_segment_sum,
|
||||||
|
const CNodePtr &unsorted_segment_sum8) {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(unsort_segment_sum);
|
||||||
|
MS_EXCEPTION_IF_NULL(unsorted_segment_sum8);
|
||||||
|
std::vector<AnfNodePtr> slice_inputs = {NewValueNode(std::make_shared<Primitive>(kSliceOpName)),
|
||||||
|
unsorted_segment_sum8};
|
||||||
|
auto slice = graph->NewCNode(slice_inputs);
|
||||||
|
MS_EXCEPTION_IF_NULL(slice);
|
||||||
|
slice->set_scope(unsort_segment_sum->scope());
|
||||||
|
slice->set_abstract(unsort_segment_sum->abstract());
|
||||||
|
auto unsort_segment_sum_shape = AnfAlgo::GetOutputInferShape(unsort_segment_sum, 0);
|
||||||
|
std::vector<size_t> offsets(unsort_segment_sum_shape.size(), 0);
|
||||||
|
AnfAlgo::SetNodeAttr(kAttrBegin, MakeValue(Convert2Int(offsets)), slice);
|
||||||
|
AnfAlgo::SetNodeAttr(kAttrSize, MakeValue(Convert2Int(unsort_segment_sum_shape)), slice);
|
||||||
|
return slice;
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
const BaseRef UnsortSegmentSumFission::DefinePattern() const {
|
||||||
|
VarPtr Xs = std::make_shared<SeqVar>();
|
||||||
|
VectorRef pattern({prim::kPrimUnsortedSegmentSum, Xs});
|
||||||
|
return pattern;
|
||||||
|
}
|
||||||
|
|
||||||
|
const AnfNodePtr UnsortSegmentSumFission::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
|
||||||
|
const EquivPtr &) const {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(node);
|
||||||
|
auto origin_node = node->cast<CNodePtr>();
|
||||||
|
MS_EXCEPTION_IF_NULL(origin_node);
|
||||||
|
if (origin_node->size() != kUnsortedSegmentSumInputNum + 1) {
|
||||||
|
MS_LOG(INFO) << "UnsortedSegmentSum has wrong inputs num, not equal " << kUnsortedSegmentSumInputNum
|
||||||
|
<< ". CNode= " << origin_node->DebugString();
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
auto input0_shape = AnfAlgo::GetPrevNodeOutputInferShape(origin_node, 0);
|
||||||
|
if (input0_shape[input0_shape.size() - 1] != 1) {
|
||||||
|
MS_LOG(INFO) << "UnsortedSegmentSum is not need fission. The last value of input0's shape is "
|
||||||
|
<< input0_shape[input0_shape.size() - 1];
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
size_t pad_dim_size;
|
||||||
|
auto input_dtype = AnfAlgo::GetPrevNodeOutputInferDataType(origin_node, 0);
|
||||||
|
if (input_dtype == kNumberTypeFloat32) {
|
||||||
|
pad_dim_size = 8;
|
||||||
|
} else if (input_dtype == kNumberTypeFloat16) {
|
||||||
|
pad_dim_size = 16;
|
||||||
|
} else {
|
||||||
|
MS_LOG(INFO) << "UnsortedSegmentSum data type not in (float21, float16), no need change";
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto padding = CreatePadding(graph, origin_node, pad_dim_size);
|
||||||
|
auto unsorted_segment_sum8 = CreateUnsortedSegmentSum(graph, origin_node, padding, pad_dim_size);
|
||||||
|
return CreateSlice(graph, origin_node, unsorted_segment_sum8);
|
||||||
|
}
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,37 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FISSION_UNSORTED_SEGMENT_SUM_FISSION_H_
|
||||||
|
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FISSION_UNSORTED_SEGMENT_SUM_FISSION_H_
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include <memory>
|
||||||
|
#include "backend/optimizer/common/optimizer.h"
|
||||||
|
#include "backend/optimizer/common/helper.h"
|
||||||
|
#include "backend/optimizer/ascend/ascend_helper.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
class UnsortSegmentSumFission : public PatternProcessPass {
|
||||||
|
public:
|
||||||
|
explicit UnsortSegmentSumFission(bool multigraph = true)
|
||||||
|
: PatternProcessPass("unsorted_segment_sum_fission", multigraph) {}
|
||||||
|
~UnsortSegmentSumFission() override = default;
|
||||||
|
const BaseRef DefinePattern() const override;
|
||||||
|
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||||
|
};
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FISSION_UNSORTED_SEGMENT_SUM_FISSION_H_
|
@ -0,0 +1,47 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import mindspore
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
||||||
|
context.set_context(save_graphs=True)
|
||||||
|
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.unsorted_segment_sum = P.UnsortedSegmentSum()
|
||||||
|
self.num_segments = 3
|
||||||
|
|
||||||
|
def construct(self, x, segment_ids):
|
||||||
|
x = self.unsorted_segment_sum(x, segment_ids, self.num_segments)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def test_net():
|
||||||
|
input_x = np.random.randn(3, 39, 1).astype(np.float32)
|
||||||
|
segment_ids = Tensor([0, 1, 2], mindspore.int32)
|
||||||
|
net = Net()
|
||||||
|
output = net(Tensor(input_x), segment_ids)
|
||||||
|
print("result", output.asnumpy())
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
test_net()
|
@ -0,0 +1,68 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "backend/optimizer/ascend/ir_fission/unsorted_segment_sum_fission.h"
|
||||||
|
#include "common/backend_common_test.h"
|
||||||
|
#include "common/py_func_graph_fetcher.h"
|
||||||
|
#include "debug/anf_ir_dump.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
class TestHWUnsortedSegmentSumFission : public BackendCommon {
|
||||||
|
public:
|
||||||
|
TestHWUnsortedSegmentSumFission() : get_py_fun_("gtest_input.pre_activate.unsorted_segment_sum_fission", true) {}
|
||||||
|
~TestHWUnsortedSegmentSumFission() override = default;
|
||||||
|
|
||||||
|
UT::PyFuncGraphFetcher get_py_fun_;
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST_F(TestHWUnsortedSegmentSumFission, test_fission) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_unsorted_segment_sum_fission", "before1");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
std::vector<int> shp_x{16, 1};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
|
||||||
|
AbstractBasePtrList args_spec_list{x_abstract, x_abstract};
|
||||||
|
auto kg = GetKernelGraph(g, args_spec_list);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
pm->AddPass(std::make_shared<opt::UnsortSegmentSumFission>());
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||||
|
|
||||||
|
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_unsorted_segment_sum_fission", "after1");
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_F(TestHWUnsortedSegmentSumFission, test_no_fission) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_unsorted_segment_sum_fission", "before2");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
std::vector<int> shp_x{16, 2};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x);
|
||||||
|
AbstractBasePtrList args_spec_list{x_abstract, x_abstract};
|
||||||
|
auto kg = GetKernelGraph(g, args_spec_list);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
pm->AddPass(std::make_shared<opt::UnsortSegmentSumFission>());
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||||
|
|
||||||
|
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_unsorted_segment_sum_fission", "after2");
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||||
|
}
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,63 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
from mindspore.ops import Primitive
|
||||||
|
from mindspore.ops import operations as P
|
||||||
|
|
||||||
|
make_tuple = Primitive('make_tuple')
|
||||||
|
tuple_getitem = Primitive('tuple_getitem')
|
||||||
|
unsorted_segment_sum = P.UnsortedSegmentSum()
|
||||||
|
num_segments = 4
|
||||||
|
padding = Primitive('Padding')
|
||||||
|
op_slice = Primitive('Slice')
|
||||||
|
op_unsorted_segment_sum = Primitive('UnsortedSegmentSum')
|
||||||
|
|
||||||
|
|
||||||
|
class FnDict:
|
||||||
|
def __init__(self):
|
||||||
|
self.fnDict = {}
|
||||||
|
|
||||||
|
def __call__(self, fn):
|
||||||
|
self.fnDict[fn.__name__] = fn
|
||||||
|
|
||||||
|
def __getitem__(self, name):
|
||||||
|
return self.fnDict[name]
|
||||||
|
|
||||||
|
|
||||||
|
def test_unsorted_segment_sum_fission(tag):
|
||||||
|
fns = FnDict()
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def before1(input0, input1):
|
||||||
|
x = unsorted_segment_sum(input0, input1, num_segments)
|
||||||
|
return x
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def after1(input0, input1):
|
||||||
|
x = padding(input0)
|
||||||
|
x = op_unsorted_segment_sum(x, input1)
|
||||||
|
x = op_slice(x)
|
||||||
|
return make_tuple(x)
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def before2(input0, input1):
|
||||||
|
x = unsorted_segment_sum(input0, input1, num_segments)
|
||||||
|
return x
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def after2(input0, input1):
|
||||||
|
x = op_unsorted_segment_sum(input0, input1)
|
||||||
|
return make_tuple(x)
|
||||||
|
|
||||||
|
return fns[tag]
|
Loading…
Reference in new issue