parent
886ef520d7
commit
ba7ee2aa13
@ -0,0 +1,60 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
""" test expand_as"""
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
|
||||||
|
|
||||||
|
def test_expand_as():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.t1 = Tensor([1, 2, 3])
|
||||||
|
self.t2 = Tensor([[1, 1, 1], [1, 1, 1]])
|
||||||
|
|
||||||
|
def construct(self):
|
||||||
|
return self.t1.expand_as(self.t2)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
net()
|
||||||
|
|
||||||
|
|
||||||
|
def test_expand_as_parameter():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.t1 = Tensor([1, 2, 3])
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
return self.t1.expand_as(x)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
net(Tensor([[1, 1, 1], [1, 1, 1]]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_expand_tensor_as_parameter_1():
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(Net, self).__init__()
|
||||||
|
self.t2 = Tensor([[1, 1, 1], [1, 1, 1]])
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
return x.expand_as(self.t2)
|
||||||
|
|
||||||
|
net = Net()
|
||||||
|
net(Tensor([1, 2, 3]))
|
Loading…
Reference in new issue