!7050 dataset API docstring: Update/add text examples

Merge pull request !7050 from cathwong/ckw_api_text_examples
pull/7050/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit c1b9efe8e6

@ -159,7 +159,7 @@ def get_monitor_sampling_interval():
Get the default interval of performance monitor sampling. Get the default interval of performance monitor sampling.
Returns: Returns:
Interval: interval (in milliseconds) for performance monitor sampling. Int, interval (in milliseconds) for performance monitor sampling.
""" """
return _config.get_monitor_sampling_interval() return _config.get_monitor_sampling_interval()

File diff suppressed because it is too large Load Diff

@ -83,6 +83,7 @@ class TypeCast(cde.TypeCastOp):
Examples: Examples:
>>> import mindspore.dataset.transforms.c_transforms as c_transforms >>> import mindspore.dataset.transforms.c_transforms as c_transforms
>>> import mindspore.common.dtype as mstype
>>> >>>
>>> type_cast_op = c_transforms.TypeCast(mstype.int32) >>> type_cast_op = c_transforms.TypeCast(mstype.int32)
""" """

@ -77,7 +77,7 @@ class Compose:
>>> >>>
>>> dataset_dir = "path/to/imagefolder_directory" >>> dataset_dir = "path/to/imagefolder_directory"
>>> # create a dataset that reads all files in dataset_dir with 8 threads >>> # create a dataset that reads all files in dataset_dir with 8 threads
>>> dataset = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8) >>> data1 = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8)
>>> # create a list of transformations to be applied to the image data >>> # create a list of transformations to be applied to the image data
>>> transform = py_transforms.Compose([py_vision.Decode(), >>> transform = py_transforms.Compose([py_vision.Decode(),
>>> py_vision.RandomHorizontalFlip(0.5), >>> py_vision.RandomHorizontalFlip(0.5),
@ -85,7 +85,7 @@ class Compose:
>>> py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)), >>> py_vision.Normalize((0.491, 0.482, 0.447), (0.247, 0.243, 0.262)),
>>> py_vision.RandomErasing()]) >>> py_vision.RandomErasing()])
>>> # apply the transform to the dataset through dataset.map() >>> # apply the transform to the dataset through dataset.map()
>>> dataset = dataset.map(operations=transform, input_columns="image") >>> data1 = data1.map(operations=transform, input_columns="image")
>>> >>>
>>> # Compose is also be invoked implicitly, by just passing in a list of ops >>> # Compose is also be invoked implicitly, by just passing in a list of ops
>>> # the above example then becomes: >>> # the above example then becomes:
@ -96,7 +96,7 @@ class Compose:
>>> py_vision.RandomErasing()] >>> py_vision.RandomErasing()]
>>> >>>
>>> # apply the transform to the dataset through dataset.map() >>> # apply the transform to the dataset through dataset.map()
>>> dataset = dataset.map(operations=transform_list, input_columns="image") >>> data2 = data2.map(operations=transform_list, input_columns="image")
>>> >>>
>>> # Certain C++ and Python ops can be combined, but not all of them >>> # Certain C++ and Python ops can be combined, but not all of them
>>> # An example of combined operations >>> # An example of combined operations
@ -104,20 +104,20 @@ class Compose:
>>> import mindspore.dataset.transforms.c_transforms as c_transforms >>> import mindspore.dataset.transforms.c_transforms as c_transforms
>>> import mindspore.dataset.vision.c_transforms as c_vision >>> import mindspore.dataset.vision.c_transforms as c_vision
>>> >>>
>>> data = ds.NumpySlicesDataset(arr, column_names=["cols"], shuffle=False) >>> data3 = ds.NumpySlicesDataset(arr, column_names=["cols"], shuffle=False)
>>> transformed_list = [py_transforms.OneHotOp(2), c_transforms.Mask(c_transforms.Relational.EQ, 1)] >>> transformed_list = [py_transforms.OneHotOp(2), c_transforms.Mask(c_transforms.Relational.EQ, 1)]
>>> data = data.map(operations=transformed_list, input_columns=["cols"]) >>> data3 = data3.map(operations=transformed_list, input_columns=["cols"])
>>> >>>
>>> # Here is an example of mixing vision ops >>> # Here is an example of mixing vision ops
>>> data_dir = "/path/to/imagefolder_directory" >>> data_dir = "/path/to/imagefolder_directory"
>>> data1 = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False) >>> data4 = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
>>> input_columns = ["column_names"] >>> input_columns = ["column_names"]
>>> op_list=[c_vision.Decode(), >>> op_list=[c_vision.Decode(),
>>> c_vision.Resize((224, 244)), >>> c_vision.Resize((224, 244)),
>>> py_vision.ToPIL(), >>> py_vision.ToPIL(),
>>> np.array, # need to convert PIL image to a NumPy array to pass it to C++ operation >>> np.array, # need to convert PIL image to a NumPy array to pass it to C++ operation
>>> c_vision.Resize((24, 24))] >>> c_vision.Resize((24, 24))]
>>> data1 = data1.map(operations=op_list, input_columns=input_columns) >>> data4 = data4.map(operations=op_list, input_columns=input_columns)
""" """
@check_compose_list @check_compose_list

Loading…
Cancel
Save