parent
a3e29e61f5
commit
c4af71e236
@ -0,0 +1,91 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include "pre_activate/ascend/ir_fission/lars_v2_fission.h"
|
||||||
|
#include <memory>
|
||||||
|
#include <vector>
|
||||||
|
#include "session/anf_runtime_algorithm.h"
|
||||||
|
#include "pre_activate/common/helper.h"
|
||||||
|
#include "utils/utils.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
namespace {
|
||||||
|
void CreateOutputsOfSquareSumAll(const FuncGraphPtr &graph, const CNodePtr &lars_v2,
|
||||||
|
std::vector<AnfNodePtr> *square_sum_all_outputs) {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(lars_v2);
|
||||||
|
if (lars_v2->size() != kLarsV2InputNum) {
|
||||||
|
MS_LOG(EXCEPTION) << "Op lars_v2's input not equal " << kLarsV2InputNum;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<AnfNodePtr> inputs = {NewValueNode(std::make_shared<Primitive>(kSquareSumAllOpName))};
|
||||||
|
inputs.push_back(lars_v2->input(1));
|
||||||
|
inputs.push_back(lars_v2->input(2));
|
||||||
|
auto square_sum_all = graph->NewCNode(inputs);
|
||||||
|
MS_EXCEPTION_IF_NULL(square_sum_all);
|
||||||
|
square_sum_all->set_scope(lars_v2->scope());
|
||||||
|
|
||||||
|
auto types = {kNumberTypeFloat32, kNumberTypeFloat32};
|
||||||
|
std::vector<size_t> shape;
|
||||||
|
auto shapes = {shape, shape};
|
||||||
|
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, square_sum_all.get());
|
||||||
|
|
||||||
|
CreateMultipleOutputsOfAnfNode(graph, square_sum_all, 2, square_sum_all_outputs);
|
||||||
|
}
|
||||||
|
|
||||||
|
CNodePtr CreateLarsV2Update(const FuncGraphPtr &graph, const CNodePtr &lars_v2,
|
||||||
|
const std::vector<AnfNodePtr> &square_sum_all_outputs) {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(lars_v2);
|
||||||
|
if (square_sum_all_outputs.size() != 2) {
|
||||||
|
MS_LOG(EXCEPTION) << "square_sum_all_outputs' size not equal 2";
|
||||||
|
}
|
||||||
|
if (lars_v2->size() != kLarsV2InputNum) {
|
||||||
|
MS_LOG(EXCEPTION) << "Op lars_v2's input not equal " << kLarsV2InputNum;
|
||||||
|
}
|
||||||
|
std::vector<AnfNodePtr> inputs = {NewValueNode(std::make_shared<Primitive>(kLarsV2UpdateOpName))};
|
||||||
|
inputs.push_back(lars_v2->input(1));
|
||||||
|
inputs.push_back(lars_v2->input(2));
|
||||||
|
inputs.push_back(square_sum_all_outputs[0]);
|
||||||
|
inputs.push_back(square_sum_all_outputs[1]);
|
||||||
|
inputs.push_back(lars_v2->input(3));
|
||||||
|
inputs.push_back(lars_v2->input(4));
|
||||||
|
auto lars_v2_update = graph->NewCNode(inputs);
|
||||||
|
MS_EXCEPTION_IF_NULL(lars_v2_update);
|
||||||
|
lars_v2_update->set_scope(lars_v2->scope());
|
||||||
|
lars_v2_update->set_abstract(lars_v2->abstract());
|
||||||
|
return lars_v2_update;
|
||||||
|
}
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
const BaseRef LarsV2Fission::DefinePattern() const {
|
||||||
|
VarPtr Xs = std::make_shared<SeqVar>();
|
||||||
|
auto lars_v2_prim = std::make_shared<Primitive>(kLarsV2OpName);
|
||||||
|
return VectorRef({lars_v2_prim, Xs});
|
||||||
|
}
|
||||||
|
|
||||||
|
const AnfNodePtr LarsV2Fission::Process(const FuncGraphPtr &graph, const AnfNodePtr &node, const EquivPtr &) const {
|
||||||
|
MS_EXCEPTION_IF_NULL(graph);
|
||||||
|
MS_EXCEPTION_IF_NULL(node);
|
||||||
|
auto lars_v2 = node->cast<CNodePtr>();
|
||||||
|
MS_EXCEPTION_IF_NULL(lars_v2);
|
||||||
|
|
||||||
|
std::vector<AnfNodePtr> square_sum_all_outputs;
|
||||||
|
CreateOutputsOfSquareSumAll(graph, lars_v2, &square_sum_all_outputs);
|
||||||
|
return CreateLarsV2Update(graph, lars_v2, square_sum_all_outputs);
|
||||||
|
}
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,32 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_
|
||||||
|
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_
|
||||||
|
|
||||||
|
#include "pre_activate/common/optimizer.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
class LarsV2Fission : public PatternProcessPass {
|
||||||
|
public:
|
||||||
|
explicit LarsV2Fission(bool multigraph = true) : PatternProcessPass("lars_v2_fission", multigraph) {}
|
||||||
|
~LarsV2Fission() override = default;
|
||||||
|
const BaseRef DefinePattern() const override;
|
||||||
|
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
|
||||||
|
};
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
||||||
|
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_LARS_V2_FISSION_H_
|
@ -0,0 +1,56 @@
|
|||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include "common/backend_common_test.h"
|
||||||
|
#include "common/py_func_graph_fetcher.h"
|
||||||
|
#include "pre_activate/ascend/ir_fission/lars_v2_fission.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
namespace opt {
|
||||||
|
class TestHWLarsV2Fission : public BackendCommon {
|
||||||
|
public:
|
||||||
|
TestHWLarsV2Fission() : get_py_fun_("gtest_input.pre_activate.lars_v2_fission_test", true) {}
|
||||||
|
~TestHWLarsV2Fission() override = default;
|
||||||
|
|
||||||
|
UT::PyFuncGraphFetcher get_py_fun_;
|
||||||
|
};
|
||||||
|
|
||||||
|
TEST_F(TestHWLarsV2Fission, test_fission) {
|
||||||
|
FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_lars_v2_fission", "before");
|
||||||
|
EXPECT_NE(g, nullptr);
|
||||||
|
|
||||||
|
// set abstract for all nodes in g
|
||||||
|
std::vector<int> shp{2, 32, 224, 224};
|
||||||
|
auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp);
|
||||||
|
g->get_return()->input(1)->set_abstract(x_abstract);
|
||||||
|
for (auto &p: g->parameters()){
|
||||||
|
p->set_abstract(x_abstract);
|
||||||
|
}
|
||||||
|
AbstractBasePtrList args_spec_list;
|
||||||
|
auto kg = GetKernelGraph(g, args_spec_list, false);
|
||||||
|
|
||||||
|
auto optimizer = std::make_shared<opt::GraphOptimizer>();
|
||||||
|
auto pm = std::make_shared<opt::PassManager>();
|
||||||
|
pm->AddPass(std::make_shared<opt::LarsV2Fission>());
|
||||||
|
optimizer->AddPassManager(pm);
|
||||||
|
FuncGraphPtr new_graph = optimizer->Optimize(kg);
|
||||||
|
|
||||||
|
FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_lars_v2_fission", "after");
|
||||||
|
EXPECT_NE(g_after, nullptr);
|
||||||
|
EXPECT_TRUE(CheckEqualGraph(g_after, new_graph));
|
||||||
|
}
|
||||||
|
} // namespace opt
|
||||||
|
} // namespace mindspore
|
@ -0,0 +1,50 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
from mindspore.ops import Primitive
|
||||||
|
|
||||||
|
lars_v2 = Primitive('LarsV2')
|
||||||
|
square_sum_all = Primitive('SquareSumAll')
|
||||||
|
lars_v2_update = Primitive('LarsV2Update')
|
||||||
|
make_tuple = Primitive('make_tuple')
|
||||||
|
tuple_getitem = Primitive('tuple_getitem')
|
||||||
|
|
||||||
|
class FnDict:
|
||||||
|
def __init__(self):
|
||||||
|
self.fnDict = {}
|
||||||
|
|
||||||
|
def __call__(self, fn):
|
||||||
|
self.fnDict[fn.__name__] = fn
|
||||||
|
|
||||||
|
def __getitem__(self, name):
|
||||||
|
return self.fnDict[name]
|
||||||
|
|
||||||
|
def test_lars_v2_fission(tag):
|
||||||
|
fns = FnDict()
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def before(input0, input1, input2, input3):
|
||||||
|
res = lars_v2(input0, input1, input2, input3)
|
||||||
|
return res
|
||||||
|
|
||||||
|
@fns
|
||||||
|
def after(input0, input1, input2, input3):
|
||||||
|
res = square_sum_all(input0, input1)
|
||||||
|
item0 = tuple_getitem(res, 0)
|
||||||
|
item1 = tuple_getitem(res, 1)
|
||||||
|
res = lars_v2_update(input0, input1, item0, item1, input2, input3)
|
||||||
|
return make_tuple(res)
|
||||||
|
|
||||||
|
return fns[tag]
|
Loading…
Reference in new issue