parent
70f5775711
commit
c5ad19deba
@ -0,0 +1,31 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include <cstdint>
|
||||
|
||||
#include "backend/kernel_compiler/gpu/arrays/dynamic_shape_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(DynamicShape, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
DynamicShapeGpuKernel, int32_t)
|
||||
MS_REG_GPU_KERNEL_ONE(DynamicShape, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
DynamicShapeGpuKernel, half)
|
||||
MS_REG_GPU_KERNEL_ONE(DynamicShape, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
DynamicShapeGpuKernel, float)
|
||||
MS_REG_GPU_KERNEL_ONE(DynamicShape, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
DynamicShapeGpuKernel, bool)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,101 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_DYNAMIC_SHAPE_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_DYNAMIC_SHAPE_GPU_KERNEL_H_
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
|
||||
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class DynamicShapeGpuKernel : public GpuKernel {
|
||||
public:
|
||||
DynamicShapeGpuKernel() { ResetResource(); }
|
||||
~DynamicShapeGpuKernel() = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
int *output_device_address = GetDeviceAddress<int>(outputs, 0);
|
||||
size_t prev_node_output_shape_size = prev_node_output_shape_.size() * sizeof(int);
|
||||
CHECK_CUDA_RET_WITH_EXCEPT(
|
||||
cudaMemcpyAsync(output_device_address, prev_node_output_shape_.data(), prev_node_output_shape_size,
|
||||
cudaMemcpyHostToDevice, reinterpret_cast<cudaStream_t>(stream_ptr)),
|
||||
"cudaMemcpyAsync prev_node_output_shape failed");
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
size_t input_count = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_count != 1) {
|
||||
MS_LOG(EXCEPTION) << input_count << " arguments were provided, but DynamicShapeGpuKernel expects 1.";
|
||||
}
|
||||
|
||||
std::vector<size_t> prev_node_output_shape_tmp = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
input_size_ = 1;
|
||||
for (const size_t &e : prev_node_output_shape_tmp) {
|
||||
input_size_ *= e;
|
||||
// shapes are Tensors with elements of type int32, but GetPrevNodeOutputInferShape returns vector of size_t,
|
||||
// so we use an int* for allocated output memory and cast to an int here, otherwise the memcpy will fail with a
|
||||
// silently.
|
||||
prev_node_output_shape_.push_back(e);
|
||||
}
|
||||
|
||||
output_size_ = prev_node_output_shape_.size();
|
||||
|
||||
InitSizeLists();
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void ResetResource() noexcept override {
|
||||
input_size_ = -1;
|
||||
output_size_ = -1;
|
||||
prev_node_output_shape_.clear();
|
||||
input_size_list_.clear();
|
||||
output_size_list_.clear();
|
||||
workspace_size_list_.clear();
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
output_size_list_.push_back(output_size_ * sizeof(int));
|
||||
}
|
||||
|
||||
private:
|
||||
size_t input_size_;
|
||||
size_t output_size_;
|
||||
std::vector<int> prev_node_output_shape_;
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_DYNAMIC_SHAPE_GPU_KERNEL_H_
|
Loading…
Reference in new issue