confusion matrix

pull/11278/head
Jiaqi 4 years ago
parent 659b5d8e10
commit c821a2f3a2

@ -36,6 +36,7 @@ from .bleu_score import BleuScore
from .cosine_similarity import CosineSimilarity
from .occlusion_sensitivity import OcclusionSensitivity
from .perplexity import Perplexity
from .confusion_matrix import ConfusionMatrixMetric, ConfusionMatrix
__all__ = [
"names",
@ -61,6 +62,8 @@ __all__ = [
"MeanSurfaceDistance",
"RootMeanSquareDistance",
"Perplexity",
"ConfusionMatrix",
"ConfusionMatrixMetric",
]
__factory__ = {
@ -85,6 +88,8 @@ __factory__ = {
'mean_surface_distance': MeanSurfaceDistance,
'root_mean_square_distance': RootMeanSquareDistance,
'perplexity': Perplexity,
'confusion_matrix': ConfusionMatrix,
'confusion_matrix_metric': ConfusionMatrixMetric,
}

File diff suppressed because it is too large Load Diff

@ -21,19 +21,19 @@ from .metric import Metric
class Dice(Metric):
r"""
The Dice coefficient is a set similarity metric. It is used to calculate the similarity between two samples. The
value of the Dice coefficient is 1 when the segmentation result is the best and 0 when the segmentation result
is the worst. The Dice coefficient indicates the ratio of the area between two objects to the total area.
The function is shown as follows:
value of the Dice coefficient is 1 when the segmentation result is the best and 0 when the segmentation result
is the worst. The Dice coefficient indicates the ratio of the area between two objects to the total area.
The function is shown as follows:
.. math::
.. math::
dice = \frac{2 * (pred \bigcap true)}{pred \bigcup true}
Args:
smooth (float): A term added to the denominator to improve numerical stability. Should be greater than 0.
Default: 1e-5.
threshold (float): A threshold, which is used to compare with the input tensor. Default: 0.5.
Args:
smooth (float): A term added to the denominator to improve numerical stability. Should be greater than 0.
Default: 1e-5.
threshold (float): A threshold, which is used to compare with the input tensor. Default: 0.5.
Examples:
Examples:
>>> x = Tensor(np.array([[0.2, 0.5], [0.3, 0.1], [0.9, 0.6]]))
>>> y = Tensor(np.array([[0, 1], [1, 0], [0, 1]]))
>>> metric = Dice(smooth=1e-5, threshold=0.5)

@ -0,0 +1,73 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# """test_confusion_matrix"""
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.nn.metrics import ConfusionMatrix
def test_confusion_matrix():
"""test_confusion_matrix"""
x = Tensor(np.array([1, 0, 1, 0]))
y = Tensor(np.array([1, 0, 0, 1]))
metric = ConfusionMatrix(num_classes=2)
metric.clear()
metric.update(x, y)
output = metric.eval()
assert np.allclose(output, np.array([[1, 1], [1, 1]]))
def test_confusion_matrix_update_len():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
metric = ConfusionMatrix(num_classes=2)
metric.clear()
with pytest.raises(ValueError):
metric.update(x)
def test_confusion_matrix_update_dim():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
y = Tensor(np.array([1, 0]))
metric = ConfusionMatrix(num_classes=2)
metric.clear()
with pytest.raises(ValueError):
metric.update(x, y)
def test_confusion_matrix_init_num_classes():
with pytest.raises(TypeError):
ConfusionMatrix(num_classes='1')
def test_confusion_matrix_init_normalize_value():
with pytest.raises(ValueError):
ConfusionMatrix(num_classes=2, normalize="wwe")
def test_confusion_matrix_init_threshold():
with pytest.raises(TypeError):
ConfusionMatrix(num_classes=2, normalize='no_norm', threshold=1)
def test_confusion_matrix_runtime():
metric = ConfusionMatrix(num_classes=2)
metric.clear()
with pytest.raises(RuntimeError):
metric.eval()

@ -0,0 +1,94 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# """test_confusion_matrix_metric"""
import numpy as np
import pytest
from mindspore import Tensor
from mindspore.nn.metrics import ConfusionMatrixMetric
def test_confusion_matrix_metric():
"""test_confusion_matrix_metric"""
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tpr", calculation_method=False)
metric.clear()
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
y = Tensor(np.array([[[0], [1]], [[0], [1]]]))
metric.update(x, y)
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
metric.update(x, y)
output = metric.eval()
assert np.allclose(output, np.array([0.75]))
def test_confusion_matrix_metric_update_len():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="ppv", calculation_method=True)
metric.clear()
with pytest.raises(ValueError):
metric.update(x)
def test_confusion_matrix_metric_update_dim():
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
y = Tensor(np.array([1, 0]))
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tnr", calculation_method=True)
metric.clear()
with pytest.raises(ValueError):
metric.update(y, x)
def test_confusion_matrix_metric_init_skip_channel():
with pytest.raises(TypeError):
ConfusionMatrixMetric(skip_channel=1)
def test_confusion_matrix_metric_init_compute_sample():
with pytest.raises(TypeError):
ConfusionMatrixMetric(calculation_method=1)
def test_confusion_matrix_metric_init_metric_name_type():
with pytest.raises(TypeError):
metric = ConfusionMatrixMetric(skip_channel=True, metric_name=1, calculation_method=False)
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
metric.update(x, y)
output = metric.eval()
assert np.allclose(output, np.array([0.75]))
def test_confusion_matrix_metric_init_metric_name_str():
with pytest.raises(NotImplementedError):
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="wwwww", calculation_method=False)
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
metric.update(x, y)
output = metric.eval()
assert np.allclose(output, np.array([0.75]))
def test_confusion_matrix_metric_runtime():
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tnr", calculation_method=True)
metric.clear()
with pytest.raises(RuntimeError):
metric.eval()
Loading…
Cancel
Save