parent
659b5d8e10
commit
c821a2f3a2
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,73 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
# """test_confusion_matrix"""
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.nn.metrics import ConfusionMatrix
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix():
|
||||||
|
"""test_confusion_matrix"""
|
||||||
|
x = Tensor(np.array([1, 0, 1, 0]))
|
||||||
|
y = Tensor(np.array([1, 0, 0, 1]))
|
||||||
|
metric = ConfusionMatrix(num_classes=2)
|
||||||
|
metric.clear()
|
||||||
|
metric.update(x, y)
|
||||||
|
output = metric.eval()
|
||||||
|
|
||||||
|
assert np.allclose(output, np.array([[1, 1], [1, 1]]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_update_len():
|
||||||
|
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
|
||||||
|
metric = ConfusionMatrix(num_classes=2)
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
metric.update(x)
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_update_dim():
|
||||||
|
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
|
||||||
|
y = Tensor(np.array([1, 0]))
|
||||||
|
metric = ConfusionMatrix(num_classes=2)
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
metric.update(x, y)
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_init_num_classes():
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
ConfusionMatrix(num_classes='1')
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_init_normalize_value():
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
ConfusionMatrix(num_classes=2, normalize="wwe")
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_init_threshold():
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
ConfusionMatrix(num_classes=2, normalize='no_norm', threshold=1)
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_runtime():
|
||||||
|
metric = ConfusionMatrix(num_classes=2)
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(RuntimeError):
|
||||||
|
metric.eval()
|
@ -0,0 +1,94 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
# """test_confusion_matrix_metric"""
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore.nn.metrics import ConfusionMatrixMetric
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_metric():
|
||||||
|
"""test_confusion_matrix_metric"""
|
||||||
|
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tpr", calculation_method=False)
|
||||||
|
metric.clear()
|
||||||
|
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
|
||||||
|
y = Tensor(np.array([[[0], [1]], [[0], [1]]]))
|
||||||
|
metric.update(x, y)
|
||||||
|
|
||||||
|
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
|
||||||
|
y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
|
||||||
|
metric.update(x, y)
|
||||||
|
output = metric.eval()
|
||||||
|
|
||||||
|
assert np.allclose(output, np.array([0.75]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_metric_update_len():
|
||||||
|
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
|
||||||
|
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="ppv", calculation_method=True)
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
metric.update(x)
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_metric_update_dim():
|
||||||
|
x = Tensor(np.array([[0.2, 0.5, 0.7], [0.3, 0.1, 0.2], [0.9, 0.6, 0.5]]))
|
||||||
|
y = Tensor(np.array([1, 0]))
|
||||||
|
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tnr", calculation_method=True)
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(ValueError):
|
||||||
|
metric.update(y, x)
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_metric_init_skip_channel():
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
ConfusionMatrixMetric(skip_channel=1)
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_metric_init_compute_sample():
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
ConfusionMatrixMetric(calculation_method=1)
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_metric_init_metric_name_type():
|
||||||
|
with pytest.raises(TypeError):
|
||||||
|
metric = ConfusionMatrixMetric(skip_channel=True, metric_name=1, calculation_method=False)
|
||||||
|
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
|
||||||
|
y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
|
||||||
|
metric.update(x, y)
|
||||||
|
output = metric.eval()
|
||||||
|
|
||||||
|
assert np.allclose(output, np.array([0.75]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_metric_init_metric_name_str():
|
||||||
|
with pytest.raises(NotImplementedError):
|
||||||
|
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="wwwww", calculation_method=False)
|
||||||
|
x = Tensor(np.array([[[0], [1]], [[1], [0]]]))
|
||||||
|
y = Tensor(np.array([[[0], [1]], [[1], [0]]]))
|
||||||
|
metric.update(x, y)
|
||||||
|
output = metric.eval()
|
||||||
|
|
||||||
|
assert np.allclose(output, np.array([0.75]))
|
||||||
|
|
||||||
|
|
||||||
|
def test_confusion_matrix_metric_runtime():
|
||||||
|
metric = ConfusionMatrixMetric(skip_channel=True, metric_name="tnr", calculation_method=True)
|
||||||
|
metric.clear()
|
||||||
|
|
||||||
|
with pytest.raises(RuntimeError):
|
||||||
|
metric.eval()
|
Loading…
Reference in new issue