!7077 code format for nn.layer

Merge pull request !7077 from chenzhongming/zomi_master
pull/7077/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit c8d8bef9e6

@ -16,13 +16,13 @@
import numpy as np import numpy as np
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops import functional as F from mindspore.ops import functional as F
from mindspore.ops import _selected_ops
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore._extends import cell_attr_register from mindspore._extends import cell_attr_register
from mindspore.ops import _selected_ops from mindspore._checkparam import Validator as validator
from ..cell import Cell from ..cell import Cell
from ..._checkparam import Validator as validator
__all__ = ['Softmax', __all__ = ['Softmax',

@ -20,7 +20,6 @@ import mindspore.common.dtype as mstype
from mindspore.common.seed import get_seed from mindspore.common.seed import get_seed
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore._checkparam import check_int_positive, check_bool
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops import functional as F from mindspore.ops import functional as F
from mindspore.ops.functional import identity from mindspore.ops.functional import identity
@ -28,12 +27,12 @@ from mindspore.ops.operations import _inner_ops as inner
from mindspore.ops.primitive import constexpr from mindspore.ops.primitive import constexpr
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore._extends import cell_attr_register from mindspore._extends import cell_attr_register
from mindspore._checkparam import Rel, Validator as validator, check_int_positive, check_bool
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore import context from mindspore import context
from ..cell import Cell from ..cell import Cell
from .activation import get_activation from .activation import get_activation
from ..._checkparam import Validator as validator
from ..._checkparam import Rel
__all__ = ['Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot', 'Pad', 'Unfold', __all__ = ['Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot', 'Pad', 'Unfold',
'MatrixDiag', 'MatrixDiagPart', 'MatrixSetDiag'] 'MatrixDiag', 'MatrixDiagPart', 'MatrixSetDiag']

@ -13,7 +13,6 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""conv""" """conv"""
import numpy as np import numpy as np
from mindspore import log as logger from mindspore import log as logger
from mindspore import context from mindspore import context
@ -23,8 +22,7 @@ from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer, Initializer from mindspore.common.initializer import initializer, Initializer
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore._checkparam import ParamValidator as validator, Rel from mindspore._checkparam import ParamValidator as validator, Rel
from mindspore._checkparam import Validator from mindspore._checkparam import check_bool, twice, check_int_positive, Validator
from mindspore._checkparam import check_bool, twice, check_int_positive
from mindspore._extends import cell_attr_register from mindspore._extends import cell_attr_register
from ..cell import Cell from ..cell import Cell

@ -18,12 +18,11 @@ from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore._checkparam import Validator
from mindspore.communication.management import get_group_size from mindspore.communication.management import get_group_size
from mindspore.context import ParallelMode from mindspore.context import ParallelMode
from mindspore.parallel._utils import _get_parallel_mode from mindspore.parallel._utils import _get_parallel_mode
from mindspore._checkparam import Rel, Validator as validator
from ..cell import Cell from ..cell import Cell
from ..._checkparam import Validator as validator, Rel
__all__ = ['Embedding', 'EmbeddingLookup'] __all__ = ['Embedding', 'EmbeddingLookup']
@ -171,7 +170,7 @@ class EmbeddingLookup(Cell):
if not isinstance(manual_shapes, tuple): if not isinstance(manual_shapes, tuple):
raise TypeError("manual_shapes type must be tuple(int) cannot be {}!".format(type(manual_shapes))) raise TypeError("manual_shapes type must be tuple(int) cannot be {}!".format(type(manual_shapes)))
for dim in manual_shapes: for dim in manual_shapes:
Validator.check_integer('manul shape dim', dim, 0, Rel.GT, self.cls_name) validator.check_integer('manul shape dim', dim, 0, Rel.GT, self.cls_name)
self.gatherv2.add_prim_attr("manual_split", manual_shapes) self.gatherv2.add_prim_attr("manual_split", manual_shapes)
self.embeddinglookup.add_prim_attr("manual_split", manual_shapes) self.embeddinglookup.add_prim_attr("manual_split", manual_shapes)
self.gatherv2.shard(((get_group_size(), 1), (1, get_group_size()))) self.gatherv2.shard(((get_group_size(), 1), (1, get_group_size())))

@ -20,8 +20,7 @@ from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops import functional as F from mindspore.ops import functional as F
from mindspore.ops.primitive import constexpr from mindspore.ops.primitive import constexpr
from mindspore._checkparam import Validator as validator from mindspore._checkparam import Rel, Validator as validator
from mindspore._checkparam import Rel
from .conv import Conv2d from .conv import Conv2d
from .container import CellList from .container import CellList
from .pooling import AvgPool2d from .pooling import AvgPool2d

@ -14,16 +14,14 @@
# ============================================================================ # ============================================================================
"""lstm""" """lstm"""
import math import math
import numpy as np import numpy as np
from mindspore._checkparam import Rel, Validator as validator
from mindspore._checkparam import Validator as validator
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore.nn.cell import Cell from mindspore.nn.cell import Cell
from mindspore.ops import operations as P from mindspore.ops import operations as P
from ..._checkparam import Rel
__all__ = ['LSTM', 'LSTMCell'] __all__ = ['LSTM', 'LSTMCell']
@ -32,7 +30,7 @@ class LSTM(Cell):
r""" r"""
LSTM (Long Short-Term Memory) layer. LSTM (Long Short-Term Memory) layer.
Applies a LSTM to the input. Apply LSTM layer to the input.
There are two pipelines connecting two consecutive cells in a LSTM model; one is cell state pipeline There are two pipelines connecting two consecutive cells in a LSTM model; one is cell state pipeline
and the other is hidden state pipeline. Denote two consecutive time nodes as :math:`t-1` and :math:`t`. and the other is hidden state pipeline. Denote two consecutive time nodes as :math:`t-1` and :math:`t`.
@ -88,25 +86,11 @@ class LSTM(Cell):
(num_directions * `num_layers`, batch_size, `hidden_size`). (num_directions * `num_layers`, batch_size, `hidden_size`).
Examples: Examples:
>>> class LstmNet(nn.Cell): >>> net = nn.LSTM(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False)
>>> def __init__(self, input_size, hidden_size, num_layers, has_bias, batch_first, bidirectional):
>>> super(LstmNet, self).__init__()
>>> self.lstm = nn.LSTM(input_size=input_size,
>>> hidden_size=hidden_size,
>>> num_layers=num_layers,
>>> has_bias=has_bias,
>>> batch_first=batch_first,
>>> bidirectional=bidirectional,
>>> dropout=0.0)
>>>
>>> def construct(self, inp, h0, c0):
>>> return self.lstm(inp, (h0, c0))
>>>
>>> net = LstmNet(10, 12, 2, has_bias=True, batch_first=True, bidirectional=False)
>>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32)) >>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32))
>>> h0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32)) >>> h0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
>>> c0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32)) >>> c0 = Tensor(np.ones([1 * 2, 3, 12]).astype(np.float32))
>>> output, (hn, cn) = net(input, h0, c0) >>> output, (hn, cn) = net(input, (h0, c0))
""" """
def __init__(self, def __init__(self,
@ -159,7 +143,7 @@ class LSTMCell(Cell):
r""" r"""
LSTM (Long Short-Term Memory) layer. LSTM (Long Short-Term Memory) layer.
Applies a LSTM layer to the input. Apply LSTM layer to the input.
There are two pipelines connecting two consecutive cells in a LSTM model; one is cell state pipeline There are two pipelines connecting two consecutive cells in a LSTM model; one is cell state pipeline
and the other is hidden state pipeline. Denote two consecutive time nodes as :math:`t-1` and :math:`t`. and the other is hidden state pipeline. Denote two consecutive time nodes as :math:`t-1` and :math:`t`.
@ -224,20 +208,7 @@ class LSTMCell(Cell):
- **state** - reserved - **state** - reserved
Examples: Examples:
>>> class LstmNet(nn.Cell): >>> net = nn.LSTMCell(10, 12, has_bias=True, batch_first=True, bidirectional=False)
>>> def __init__(self, input_size, hidden_size, has_bias, batch_first, bidirectional):
>>> super(LstmNet, self).__init__()
>>> self.lstm = nn.LSTMCell(input_size=input_size,
>>> hidden_size=hidden_size,
>>> has_bias=has_bias,
>>> batch_first=batch_first,
>>> bidirectional=bidirectional,
>>> dropout=0.0)
>>>
>>> def construct(self, inp, h, c, w):
>>> return self.lstm(inp, h, c, w)
>>>
>>> net = LstmNet(10, 12, has_bias=True, batch_first=True, bidirectional=False)
>>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32)) >>> input = Tensor(np.ones([3, 5, 10]).astype(np.float32))
>>> h = Tensor(np.ones([1, 3, 12]).astype(np.float32)) >>> h = Tensor(np.ones([1, 3, 12]).astype(np.float32))
>>> c = Tensor(np.ones([1, 3, 12]).astype(np.float32)) >>> c = Tensor(np.ones([1, 3, 12]).astype(np.float32))

@ -21,8 +21,7 @@ from mindspore.common.tensor import Tensor
from mindspore.ops.primitive import constexpr from mindspore.ops.primitive import constexpr
from ..cell import Cell from ..cell import Cell
from ...common import dtype as mstype from ...common import dtype as mstype
from ..._checkparam import Validator as validator from ..._checkparam import Rel, Validator as validator
from ..._checkparam import Rel
__all__ = ['ReduceLogSumExp', 'Range', 'LinSpace', 'LGamma', 'MatMul'] __all__ = ['ReduceLogSumExp', 'Range', 'LinSpace', 'LGamma', 'MatMul']

@ -19,11 +19,10 @@ from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.ops.primitive import constexpr from mindspore.ops.primitive import constexpr
import mindspore.context as context import mindspore.context as context
from mindspore._checkparam import check_bool, check_typename from mindspore._checkparam import check_bool, check_typename, check_int_positive
from mindspore._extends import cell_attr_register from mindspore._extends import cell_attr_register
from mindspore.communication.management import get_group_size, get_rank from mindspore.communication.management import get_group_size, get_rank
from mindspore.communication import management from mindspore.communication import management
from mindspore._checkparam import check_int_positive
from mindspore.ops import _selected_ops from mindspore.ops import _selected_ops
from ..cell import Cell from ..cell import Cell

@ -15,11 +15,10 @@
"""pooling""" """pooling"""
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops import functional as F from mindspore.ops import functional as F
from mindspore._checkparam import Validator as validator from mindspore._checkparam import Rel, Validator as validator
from mindspore.ops.primitive import constexpr from mindspore.ops.primitive import constexpr
from ... import context import mindspore.context as context
from ..cell import Cell from ..cell import Cell
from ..._checkparam import Rel
__all__ = ['AvgPool2d', 'MaxPool2d', 'AvgPool1d'] __all__ = ['AvgPool2d', 'MaxPool2d', 'AvgPool1d']

@ -16,7 +16,6 @@
from functools import partial from functools import partial
import numpy as np import numpy as np
from mindspore import nn from mindspore import nn
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
from mindspore.ops import operations as P from mindspore.ops import operations as P
@ -24,15 +23,11 @@ from mindspore.ops import functional as F
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
from mindspore.common.initializer import initializer from mindspore.common.initializer import initializer
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
from mindspore._checkparam import check_int_positive, check_bool, twice from mindspore._checkparam import Rel, check_int_positive, check_bool, twice, ParamValidator as validator
from mindspore._checkparam import Rel
import mindspore.context as context import mindspore.context as context
from .normalization import BatchNorm2d, BatchNorm1d from .normalization import BatchNorm2d, BatchNorm1d
from .activation import get_activation, ReLU, LeakyReLU from .activation import get_activation, ReLU, LeakyReLU
from ..cell import Cell from ..cell import Cell
from . import conv, basic
from ..._checkparam import ParamValidator as validator
from ...ops.operations import _quant_ops as Q from ...ops.operations import _quant_ops as Q
__all__ = [ __all__ = [
@ -127,17 +122,17 @@ class Conv2dBnAct(Cell):
after_fake=True): after_fake=True):
super(Conv2dBnAct, self).__init__() super(Conv2dBnAct, self).__init__()
self.conv = conv.Conv2d(in_channels, self.conv = nn.Conv2d(in_channels,
out_channels, out_channels,
kernel_size=kernel_size, kernel_size=kernel_size,
stride=stride, stride=stride,
pad_mode=pad_mode, pad_mode=pad_mode,
padding=padding, padding=padding,
dilation=dilation, dilation=dilation,
group=group, group=group,
has_bias=has_bias, has_bias=has_bias,
weight_init=weight_init, weight_init=weight_init,
bias_init=bias_init) bias_init=bias_init)
self.has_bn = validator.check_bool("has_bn", has_bn) self.has_bn = validator.check_bool("has_bn", has_bn)
self.has_act = activation is not None self.has_act = activation is not None
self.after_fake = after_fake self.after_fake = after_fake
@ -200,7 +195,7 @@ class DenseBnAct(Cell):
activation=None, activation=None,
after_fake=True): after_fake=True):
super(DenseBnAct, self).__init__() super(DenseBnAct, self).__init__()
self.dense = basic.Dense( self.dense = nn.Dense(
in_channels, in_channels,
out_channels, out_channels,
weight_init, weight_init,
@ -1349,11 +1344,6 @@ class QuantBlock(Cell):
Outputs: Outputs:
Tensor of shape :math:`(N, out\_channels)`. Tensor of shape :math:`(N, out\_channels)`.
Examples:
>>> net = nn.Dense(3, 4)
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> net(input)
""" """
def __init__(self, def __init__(self,

Loading…
Cancel
Save