|
|
|
@ -19,84 +19,50 @@
|
|
|
|
|
|
|
|
|
|
namespace mindspore {
|
|
|
|
|
namespace kernel {
|
|
|
|
|
void ConcatCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
|
|
|
|
template <typename T>
|
|
|
|
|
void ConcatCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
|
|
|
|
CheckParam(kernel_node);
|
|
|
|
|
|
|
|
|
|
axis_ = AnfAlgo::GetNodeAttr<int64_t>(kernel_node, AXIS);
|
|
|
|
|
axis_ = LongToInt(AnfAlgo::GetNodeAttr<int64_t>(kernel_node, AXIS));
|
|
|
|
|
auto input_1_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
|
|
|
|
if (axis_ < 0) {
|
|
|
|
|
axis_ = axis_ + SizeToLong(input_1_shape.size());
|
|
|
|
|
axis_ = axis_ + SizeToInt(input_1_shape.size());
|
|
|
|
|
}
|
|
|
|
|
axis_ += 4 - SizeToLong(input_1_shape.size());
|
|
|
|
|
|
|
|
|
|
auto input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
|
|
|
|
for (size_t i = 0; i < input_num; i++) {
|
|
|
|
|
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, i);
|
|
|
|
|
CPUKernelUtils::ExpandDimsTo4(&input_shape);
|
|
|
|
|
input_shape_list_.push_back(input_shape);
|
|
|
|
|
input_num_ = AnfAlgo::GetInputTensorNum(kernel_node);
|
|
|
|
|
for (size_t i = 0; i < input_num_; i++) {
|
|
|
|
|
auto input_shape_i = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, i);
|
|
|
|
|
auto flat_shape = CPUKernelUtils::FlatShapeByAxis(input_shape_i, axis_);
|
|
|
|
|
input_flat_shape_list_.push_back(flat_shape);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
|
|
|
|
CPUKernelUtils::ExpandDimsTo4(&output_shape_);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
bool ConcatCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
|
|
|
|
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
|
|
|
|
const std::vector<kernel::AddressPtr> &outputs) {
|
|
|
|
|
auto output_addr = reinterpret_cast<float *>(outputs[0]->addr);
|
|
|
|
|
template <typename T>
|
|
|
|
|
bool ConcatCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
|
|
|
|
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
|
|
|
|
const std::vector<kernel::AddressPtr> &outputs) {
|
|
|
|
|
auto output_addr = reinterpret_cast<T *>(outputs[0]->addr);
|
|
|
|
|
auto buff_size = outputs[0]->size;
|
|
|
|
|
size_t dim0 = output_shape_[0];
|
|
|
|
|
size_t dim1 = output_shape_[1];
|
|
|
|
|
size_t dim2 = output_shape_[2];
|
|
|
|
|
|
|
|
|
|
if (axis_ == 3) {
|
|
|
|
|
for (size_t i = 0; i < dim0; ++i) {
|
|
|
|
|
for (size_t j = 0; j < dim1; ++j) {
|
|
|
|
|
for (size_t k = 0; k < dim2; ++k) {
|
|
|
|
|
CopyDataToOutput(inputs, i, j, k, &output_addr, &buff_size);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} else if (axis_ == 2) {
|
|
|
|
|
for (size_t i = 0; i < dim0; ++i) {
|
|
|
|
|
for (size_t j = 0; j < dim1; ++j) {
|
|
|
|
|
CopyDataToOutput(inputs, i, j, 0, &output_addr, &buff_size);
|
|
|
|
|
// each input's row of shape after flat are same
|
|
|
|
|
auto before_axis = input_flat_shape_list_[0][0];
|
|
|
|
|
for (size_t i = 0; i < before_axis; ++i) {
|
|
|
|
|
for (size_t j = 0; j < input_num_; ++j) {
|
|
|
|
|
auto input_j_addr = reinterpret_cast<T *>(inputs[j]->addr);
|
|
|
|
|
auto copy_num = input_flat_shape_list_[j][1];
|
|
|
|
|
auto offset = copy_num * i;
|
|
|
|
|
auto ret = memcpy_s(output_addr, buff_size, input_j_addr + offset, copy_num * sizeof(T));
|
|
|
|
|
if (ret != EOK) {
|
|
|
|
|
MS_LOG(EXCEPTION) << "memcpy failed.";
|
|
|
|
|
}
|
|
|
|
|
output_addr += copy_num;
|
|
|
|
|
buff_size -= copy_num * sizeof(T);
|
|
|
|
|
}
|
|
|
|
|
} else if (axis_ == 1) {
|
|
|
|
|
for (size_t i = 0; i < dim0; ++i) {
|
|
|
|
|
CopyDataToOutput(inputs, i, 0, 0, &output_addr, &buff_size);
|
|
|
|
|
}
|
|
|
|
|
} else if (axis_ == 0) {
|
|
|
|
|
CopyDataToOutput(inputs, 0, 0, 0, &output_addr, &buff_size);
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void ConcatCPUKernel::CopyDataToOutput(const std::vector<kernel::AddressPtr> &inputs, size_t dim0, size_t dim1,
|
|
|
|
|
size_t dim2, float **output_addr, size_t *buff_size) {
|
|
|
|
|
for (size_t i = 0; i < input_shape_list_.size(); ++i) {
|
|
|
|
|
auto input_i_shape = input_shape_list_[i];
|
|
|
|
|
auto input_i_addr = reinterpret_cast<float *>(inputs[i]->addr);
|
|
|
|
|
|
|
|
|
|
size_t num = CPUKernelUtils::GetElementNumOnAxis(input_i_shape, axis_);
|
|
|
|
|
num *= input_i_shape[axis_];
|
|
|
|
|
auto pos = CPUKernelUtils::CalcOffset(input_i_shape, dim0, dim1, dim2, 0);
|
|
|
|
|
auto ret = memcpy_s(*output_addr, *buff_size, input_i_addr + pos, num * sizeof(float));
|
|
|
|
|
if (ret != EOK) {
|
|
|
|
|
MS_LOG(EXCEPTION) << "memcpy failed.";
|
|
|
|
|
}
|
|
|
|
|
*output_addr += num;
|
|
|
|
|
*buff_size -= num * sizeof(float);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void ConcatCPUKernel::CheckParam(const CNodePtr &kernel_node) {
|
|
|
|
|
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
|
|
|
|
if (input_shape.size() > 4) {
|
|
|
|
|
MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but ConcatCPUKernel olny support 4d or lower.";
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
|
void ConcatCPUKernel<T>::CheckParam(const CNodePtr &kernel_node) {
|
|
|
|
|
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
|
|
|
|
if (output_num != 1) {
|
|
|
|
|
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but ConcatCPUKernel needs 1 output.";
|
|
|
|
|