parent
2f565f4c20
commit
cccb230f7b
@ -0,0 +1,42 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "random_op_impl.cuh"
|
||||
template <typename T>
|
||||
__global__ void NormalKernel(int seed, curandState *globalState, T *output, size_t count) {
|
||||
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (count); i += blockDim.x * gridDim.x) {
|
||||
curand_init(seed, i, 0, &globalState[i]);
|
||||
output[i] = curand_normal(&globalState[i]);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void StandardNormal(int seed, int seed2, curandState *globalState, T *output, size_t count, cudaStream_t cuda_stream) {
|
||||
int RNG_seed = 0;
|
||||
if (seed2 != 0) {
|
||||
RNG_seed = seed2;
|
||||
} else if (seed != 0) {
|
||||
RNG_seed = seed;
|
||||
} else {
|
||||
RNG_seed = time(NULL);
|
||||
}
|
||||
NormalKernel<<<GET_BLOCKS(count), GET_THREADS, 0, cuda_stream>>>(RNG_seed, globalState, output, count);
|
||||
return;
|
||||
}
|
||||
|
||||
template void StandardNormal<float>(int seed, int seed2, curandState *globalState,
|
||||
float *output, size_t count, cudaStream_t cuda_stream);
|
@ -0,0 +1,26 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_RANDOMOPIMPL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_RANDOMOPIMPL_H_
|
||||
|
||||
#include <curand_kernel.h>
|
||||
#include "device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
void StandardNormal(int seed, int seed2, curandState *globalState,
|
||||
T *output, size_t count, cudaStream_t cuda_stream);
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_RANDOMOPIMPL_H_
|
@ -0,0 +1,24 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/math/random_op_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(StandardNormal, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
RandomOpGpuKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,121 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_RANDOMOP_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_RANDOMOP_GPU_KERNEL_H_
|
||||
|
||||
#include <curand_kernel.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/random_op_impl.cuh"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
enum RandomOptype { RANDOM_OP_NORMAL = 0, RANDOM_OP_INVALID_TYPE = 255 };
|
||||
|
||||
const std::map<std::string, RandomOptype> kRandomOpTypeMap = {{"StandardNormal", RANDOM_OP_NORMAL}};
|
||||
template <typename T>
|
||||
class RandomOpGpuKernel : public GpuKernel {
|
||||
public:
|
||||
RandomOpGpuKernel()
|
||||
: random_op_type_(RANDOM_OP_INVALID_TYPE),
|
||||
input_size_0_(0),
|
||||
output_size_(sizeof(T)),
|
||||
workspace_size_(sizeof(curandState)) {}
|
||||
~RandomOpGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
void *workspace_addr = GetDeviceAddress<void *>(workspace, 0);
|
||||
curandState *devStates = reinterpret_cast<curandState *>(workspace_addr);
|
||||
T *output_addr = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
switch (random_op_type_) {
|
||||
case RANDOM_OP_NORMAL: {
|
||||
StandardNormal(seed_, seed2_, devStates, output_addr, outputs[0]->size / sizeof(T),
|
||||
reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
MS_LOG(EXCEPTION) << "Random operation " << random_op_type_ << " is not supported.";
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
std::string kernel_name = AnfAlgo::GetCNodeName(kernel_node);
|
||||
auto iter = kRandomOpTypeMap.find(kernel_name);
|
||||
if (iter == kRandomOpTypeMap.end()) {
|
||||
MS_LOG(EXCEPTION) << "Random operation " << kernel_name << " is not supported.";
|
||||
} else {
|
||||
random_op_type_ = iter->second;
|
||||
}
|
||||
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
|
||||
if (input_num != 1) {
|
||||
MS_LOG(ERROR) << "Input number is " << input_num << ", but random op needs 1 input.";
|
||||
return false;
|
||||
}
|
||||
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
|
||||
if (output_num != 1) {
|
||||
MS_LOG(ERROR) << "Output number is " << output_num << ", but random op needs 1 output.";
|
||||
return false;
|
||||
}
|
||||
auto input_shape_0 = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < input_shape_0.size(); i++) {
|
||||
input_size_0_ += input_shape_0[i];
|
||||
}
|
||||
input_size_0_ *= sizeof(int);
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < output_shape.size(); i++) {
|
||||
output_size_ *= output_shape[i];
|
||||
workspace_size_ *= output_shape[i];
|
||||
}
|
||||
seed_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed"));
|
||||
seed2_ = GetValue<int>(AnfAlgo::GetCNodePrimitive(kernel_node)->GetAttr("seed2"));
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_0_);
|
||||
output_size_list_.push_back(output_size_);
|
||||
workspace_size_list_.push_back(workspace_size_);
|
||||
}
|
||||
|
||||
private:
|
||||
RandomOptype random_op_type_;
|
||||
size_t input_size_0_;
|
||||
size_t output_size_;
|
||||
size_t workspace_size_;
|
||||
int seed_;
|
||||
int seed2_;
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_RANDOMOP_GPU_KERNEL_H_
|
Loading…
Reference in new issue