!2962 gpu support SmoothL1Loss kernel
Merge pull request !2962 from chenweifeng/smoothl1losspull/2962/MERGE
commit
cf5a27e97d
@ -0,0 +1,64 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "smooth_l1_loss_impl.cuh"
|
||||
#include "device/gpu/cuda_common.h"
|
||||
|
||||
template <typename T>
|
||||
__global__ void SmoothL1LossKernel(const int input_size, const float sigma, const T *prediction, const T *target,
|
||||
T *loss) {
|
||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < input_size; i += blockDim.x * gridDim.x) {
|
||||
T value = (prediction[i] - target[i]) > 0 ? (prediction[i] - target[i]) : (target[i] - prediction[i]);
|
||||
if (value < sigma) {
|
||||
loss[i] = static_cast<T>(0.5) * value * value;
|
||||
} else {
|
||||
loss[i] = value - static_cast<T>(0.5);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SmoothL1Loss(const int &input_size, const float &sigma, const T *prediction, const T *target, T *loss,
|
||||
cudaStream_t stream) {
|
||||
SmoothL1LossKernel<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, sigma, prediction, target, loss);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void SmoothL1LossGradKernel(const int input_size, const float sigma, const T *prediction, const T *target,
|
||||
const T *dloss, T *dx) {
|
||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < input_size; i += blockDim.x * gridDim.x) {
|
||||
T value = prediction[i] - target[i];
|
||||
if (value > static_cast<T>(sigma)) {
|
||||
dx[i] = dloss[i];
|
||||
} else if (value < static_cast<T>(-sigma)) {
|
||||
dx[i] = -dloss[i];
|
||||
} else {
|
||||
dx[i] = value * dloss[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void SmoothL1LossGrad(const int &input_size, const float &sigma, const T *prediction, const T *target, const T *dloss,
|
||||
T *dx, cudaStream_t stream) {
|
||||
SmoothL1LossGradKernel<<<GET_BLOCKS(input_size), GET_THREADS, 0, stream>>>(input_size, sigma, prediction, target,
|
||||
dloss, dx);
|
||||
}
|
||||
|
||||
template void SmoothL1Loss(const int &input_size, const float &sigma, const float *prediction, const float *target,
|
||||
float *loss, cudaStream_t stream);
|
||||
template void SmoothL1LossGrad(const int &input_size, const float &sigma, const float *prediction, const float *target,
|
||||
const float *dloss, float *dx, cudaStream_t stream);
|
@ -0,0 +1,25 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SMOOTH_L1_LOSS_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SMOOTH_L1_LOSS_H_
|
||||
template <typename T>
|
||||
void SmoothL1Loss(const int &input_size, const float &sigma, const T *prediction, const T *target, T *loss,
|
||||
cudaStream_t stream);
|
||||
template <typename T>
|
||||
void SmoothL1LossGrad(const int &input_size, const float &sigma, const T *prediction, const T *target, const T *dloss,
|
||||
T *dx, cudaStream_t stream);
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMPL_SMOOTH_L1_LOSS_H_
|
@ -0,0 +1,26 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/smooth_l1_loss_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(
|
||||
SmoothL1Loss,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
SmoothL1LossGpuKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,75 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_SMOOTH_L1_LOSS_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_SMOOTH_L1_LOSS_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/smooth_l1_loss_impl.cuh"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class SmoothL1LossGpuKernel : public GpuKernel {
|
||||
public:
|
||||
SmoothL1LossGpuKernel() : input_size_(1), sigma_(1.0) {}
|
||||
~SmoothL1LossGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *prediction = GetDeviceAddress<T>(inputs, 0);
|
||||
T *target = GetDeviceAddress<T>(inputs, 1);
|
||||
T *loss = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
SmoothL1Loss(input_size_, sigma_, prediction, target, loss, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
|
||||
sigma_ = GetAttr<float>(kernel_node, "sigma");
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
output_size_list_.push_back(input_size_ * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
size_t input_size_;
|
||||
float sigma_;
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_SMOOTH_L1_LOSS_GPU_KERNEL_H_
|
@ -0,0 +1,29 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "kernel/gpu/nn/smooth_l1_loss_grad_gpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
MS_REG_GPU_KERNEL_ONE(SmoothL1LossGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SmoothL1LossGradGpuKernel, float)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,76 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_KERNEL_GPU_NN_SMOOTH_L1_LOSS_GRAD_GPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_KERNEL_GPU_NN_SMOOTH_L1_LOSS_GRAD_GPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "kernel/gpu/gpu_kernel.h"
|
||||
#include "kernel/gpu/gpu_kernel_factory.h"
|
||||
#include "kernel/gpu/cuda_impl/smooth_l1_loss_impl.cuh"
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class SmoothL1LossGradGpuKernel : public GpuKernel {
|
||||
public:
|
||||
SmoothL1LossGradGpuKernel() : input_size_(1), sigma_(1.0) {}
|
||||
~SmoothL1LossGradGpuKernel() override = default;
|
||||
|
||||
const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; }
|
||||
const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; }
|
||||
const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; }
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &,
|
||||
const std::vector<AddressPtr> &outputs, void *stream_ptr) override {
|
||||
T *prediction = GetDeviceAddress<T>(inputs, 0);
|
||||
T *target = GetDeviceAddress<T>(inputs, 1);
|
||||
T *dloss = GetDeviceAddress<T>(inputs, 2);
|
||||
T *dx = GetDeviceAddress<T>(outputs, 0);
|
||||
|
||||
SmoothL1LossGrad(input_size_, sigma_, prediction, target, dloss, dx, reinterpret_cast<cudaStream_t>(stream_ptr));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Init(const CNodePtr &kernel_node) override {
|
||||
auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0);
|
||||
for (size_t i = 0; i < input_shape.size(); i++) {
|
||||
input_size_ *= input_shape[i];
|
||||
}
|
||||
|
||||
sigma_ = GetAttr<float>(kernel_node, "sigma");
|
||||
InitSizeLists();
|
||||
return true;
|
||||
}
|
||||
|
||||
protected:
|
||||
void InitSizeLists() override {
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
input_size_list_.push_back(input_size_ * sizeof(T));
|
||||
output_size_list_.push_back(input_size_ * sizeof(T));
|
||||
}
|
||||
|
||||
private:
|
||||
size_t input_size_;
|
||||
float sigma_;
|
||||
|
||||
std::vector<size_t> input_size_list_;
|
||||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
};
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_KERNEL_GPU_NN_SMOOTH_L1_LOSS_GRAD_GPU_KERNEL_H_
|
@ -0,0 +1,81 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import composite as C
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU", save_graphs=True)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_smoothl1loss():
|
||||
np.random.seed(42)
|
||||
prediction = np.random.randn(20).astype(np.float32)
|
||||
target = np.random.randn(20).astype(np.float32)
|
||||
sigma = 1.0
|
||||
|
||||
net = nn.SmoothL1Loss(sigma)
|
||||
loss = net(Tensor(prediction), Tensor(target))
|
||||
expect = [0.46941718, 0.00382918, 0.16829303, 2.447778, 0.04812113, 0.05953304,
|
||||
2.2302065, 0.07672881, 0.00860204, 0.34798968, 0.00956192, 1.818008,
|
||||
0.03262977, 0.36599946, 2.047463, 0.2168481, 0.7216947, 1.7739174,
|
||||
0.08826803, 1.109165]
|
||||
assert np.allclose(loss.asnumpy(), expect)
|
||||
|
||||
|
||||
|
||||
class Grad(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(Grad, self).__init__()
|
||||
self.grad = C.GradOperation(name="get_all", get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, x1, x2, sens):
|
||||
gout = self.grad(self.network)(x1, x2, sens)
|
||||
return gout
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_smoothl1loss_grad():
|
||||
np.random.seed(42)
|
||||
prediction = np.random.randn(20).astype(np.float32)
|
||||
target = np.random.randn(20).astype(np.float32)
|
||||
sens = np.random.randn(20).astype(np.float32)
|
||||
sigma = 1.0
|
||||
|
||||
net = nn.SmoothL1Loss(sigma)
|
||||
grad = Grad(net)
|
||||
dx = grad(Tensor(prediction), Tensor(target), Tensor(sens))
|
||||
|
||||
dx1_expect = [-0.71552587, 0.01499678, -0.06709455, -0.30110368, -0.45868093,
|
||||
0.24838912, -0.46063876, 0.41411355, 0.04507046, -1.4708229,
|
||||
0.04481723, 0.38508227, -0.17292616, -0.52333146, -1.0309995,
|
||||
0.61330026, 0.83921754, -0.3092124, 0.1391843, -0.9755451]
|
||||
|
||||
dx2_expect = [0.71552587, -0.01499678, 0.06709455, 0.30110368, 0.45868093,
|
||||
-0.24838912, 0.46063876, -0.41411355, -0.04507046, 1.4708229,
|
||||
-0.04481723, -0.38508227, 0.17292616, 0.52333146, 1.0309995,
|
||||
-0.61330026, -0.83921754, 0.3092124, -0.1391843, 0.9755451]
|
||||
|
||||
assert np.allclose(dx[0].asnumpy(), dx1_expect)
|
||||
assert np.allclose(dx[1].asnumpy(), dx2_expect)
|
Loading…
Reference in new issue