|
|
|
@ -1738,6 +1738,8 @@ class SGD(PrimitiveWithInfer):
|
|
|
|
|
@prim_attr_register
|
|
|
|
|
def __init__(self, dampening=0.0, weight_decay=0.0, nesterov=False):
|
|
|
|
|
validator.check_value_type("nesterov", nesterov, [bool], self.name)
|
|
|
|
|
if nesterov and dampening != 0:
|
|
|
|
|
raise ValueError(f"Nesterov need zero dampening!")
|
|
|
|
|
self.init_prim_io_names(inputs=['parameters', 'gradient', 'learning_rate', 'accum', 'momentum', 'stat'],
|
|
|
|
|
outputs=['output'])
|
|
|
|
|
|
|
|
|
@ -2151,7 +2153,8 @@ class ResizeBilinear(PrimitiveWithInfer):
|
|
|
|
|
rescale by `new_height / height`. Default: False.
|
|
|
|
|
|
|
|
|
|
Inputs:
|
|
|
|
|
- **input** (Tensor) - Image to be resized. Tensor of shape `(N_i, ..., N_n, height, width)`.
|
|
|
|
|
- **input** (Tensor) - Image to be resized. Tensor of shape `(N_i, ..., N_n, height, width)`,
|
|
|
|
|
with data type of float32 or float16.
|
|
|
|
|
|
|
|
|
|
Outputs:
|
|
|
|
|
Tensor, resized image. Tensor of shape `(N_i, ..., N_n, new_height, new_width)` in `float32`.
|
|
|
|
|