parent
b75bc71fe2
commit
d36abebe54
@ -0,0 +1,29 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""training utils"""
|
||||
from mindspore import dtype as mstype
|
||||
from mindspore.nn.dynamic_lr import exponential_decay_lr
|
||||
from mindspore import Tensor
|
||||
|
||||
|
||||
def get_lr(cfg, dataset_size):
|
||||
if cfg.cell == "lstm":
|
||||
lr = exponential_decay_lr(cfg.lstm_base_lr, cfg.lstm_decay_rate, dataset_size * cfg.num_epochs,
|
||||
dataset_size,
|
||||
cfg.lstm_decay_epoch)
|
||||
lr_ret = Tensor(lr, mstype.float32)
|
||||
else:
|
||||
lr_ret = cfg.lr
|
||||
return lr_ret
|
Loading…
Reference in new issue