parent
6fd4848a63
commit
d3ed6d27c7
@ -0,0 +1,55 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
##############export checkpoint file into air and onnx models#################
|
||||||
|
python export.py
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import mindspore as ms
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||||
|
|
||||||
|
from src.config import alexnet_cifar10_cfg, alexnet_imagenet_cfg
|
||||||
|
from src.alexnet import AlexNet
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description='Classification')
|
||||||
|
parser.add_argument('--dataset_name', type=str, default='cifar10', choices=['imagenet', 'cifar10'],
|
||||||
|
help='please choose dataset: imagenet or cifar10.')
|
||||||
|
parser.add_argument('--device_target', type=str, default="Ascend",
|
||||||
|
choices=['Ascend', 'GPU'],
|
||||||
|
help='device where the code will be implemented (default: Ascend)')
|
||||||
|
parser.add_argument('--ckpt_path', type=str, default="./ckpt", help='if is test, must provide\
|
||||||
|
path where the trained ckpt file')
|
||||||
|
args_opt = parser.parse_args()
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target)
|
||||||
|
|
||||||
|
if args_opt.dataset_name == 'cifar10':
|
||||||
|
cfg = alexnet_cifar10_cfg
|
||||||
|
elif args_opt.dataset_name == 'imagenet':
|
||||||
|
cfg = alexnet_imagenet_cfg
|
||||||
|
else:
|
||||||
|
raise ValueError("dataset is not support.")
|
||||||
|
|
||||||
|
net = AlexNet(num_classes=cfg.num_classes)
|
||||||
|
|
||||||
|
param_dict = load_checkpoint(args_opt.ckpt_path)
|
||||||
|
load_param_into_net(net, param_dict)
|
||||||
|
|
||||||
|
input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, cfg.image_height, cfg.image_width]), ms.float32)
|
||||||
|
export(net, input_arr, file_name=cfg.air_name, file_format="AIR")
|
@ -0,0 +1,48 @@
|
|||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
export quantization aware training network to infer `AIR` backend.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
import mindspore
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore import context
|
||||||
|
from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
|
||||||
|
|
||||||
|
from src.config import mnist_cfg as cfg
|
||||||
|
from src.lenet import LeNet5
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description='MindSpore MNIST Example')
|
||||||
|
parser.add_argument('--device_target', type=str, default="Ascend",
|
||||||
|
choices=['Ascend', 'GPU'],
|
||||||
|
help='device where the code will be implemented (default: Ascend)')
|
||||||
|
parser.add_argument('--ckpt_path', type=str, default="",
|
||||||
|
help='if mode is test, must provide path where the trained ckpt file')
|
||||||
|
args = parser.parse_args()
|
||||||
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
|
||||||
|
|
||||||
|
# define fusion network
|
||||||
|
network = LeNet5(cfg.num_classes)
|
||||||
|
# load network checkpoint
|
||||||
|
param_dict = load_checkpoint(args.ckpt_path)
|
||||||
|
load_param_into_net(network, param_dict)
|
||||||
|
|
||||||
|
# export network
|
||||||
|
inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32)
|
||||||
|
export(network, inputs, file_name=cfg.air_name, file_format='AIR')
|
Loading…
Reference in new issue