!7437 auto parallel support dynamic

Merge pull request !7437 from yao_yf/auto_parallel_support_dynamic_shape
pull/7437/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit d4142d682d

@ -808,6 +808,61 @@ double LayerNormCost::GetForwardComputationCost(const std::vector<TensorInfo> &i
return result; return result;
} }
double UniqueCost::GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const {
return 0.0;
}
double UniqueCost::GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const {
double result = 0.0;
if (is_parameter_[0]) {
TensorInfo input = inputs[0];
CheckGlobalDeviceManager();
MS_EXCEPTION_IF_NULL(g_device_manager);
auto total_device_num = g_device_manager->GetDeviceListByStageId(stage_id).size();
Shape input_shape = input.shape();
Shape input_slice_shape = input.slice_shape();
int32_t used_device_num = 1;
for (size_t i = 0; i < input_shape.size(); ++i) {
used_device_num *= input_shape[i] / input_slice_shape[i];
}
if (total_device_num != IntToSize(used_device_num)) {
result = ListProduct(input_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
}
}
return result;
}
double UniqueCost::GetForwardComputationCost(const std::vector<TensorInfo> &inputs,
const std::vector<TensorInfo> &outputs, int32_t stage_id) const {
// In forward phase, the computation cost = slice(A) + slice(B)
Shape input_slice_shape = inputs[0].slice_shape();
double result = ListProduct(input_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
return result;
}
double UniqueCost::GetBackwardComputationCost(const std::vector<TensorInfo> &inputs,
const std::vector<TensorInfo> &outputs, int32_t stage_id) const {
// In backward phase, the computation cost = (0 or 1) allreduce(slice(B))
double result = 0.0;
if (is_parameter_[0]) {
TensorInfo input = inputs[0]; // tensor B
CheckGlobalDeviceManager();
MS_EXCEPTION_IF_NULL(g_device_manager);
auto total_device_num = g_device_manager->GetDeviceListByStageId(stage_id).size();
Shape input_shape = input.shape();
Shape input_slice_shape = input.slice_shape();
int32_t used_device_num = 1;
for (size_t i = 0; i < input_shape.size(); ++i) {
used_device_num *= input_shape[i] / input_slice_shape[i];
}
if (total_device_num != IntToSize(used_device_num)) {
result += ListProduct(input_slice_shape) * static_cast<double>(inputs_type_lengths_[0]);
}
}
return result;
}
double GatherV2PCost::GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs, double GatherV2PCost::GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const { int32_t stage_id) const {
double result = 0.0; double result = 0.0;

@ -606,6 +606,32 @@ class LayerNormCost : public OperatorCost {
using DropOutCostPtr = std::shared_ptr<DropOutCost>; using DropOutCostPtr = std::shared_ptr<DropOutCost>;
class UniqueCost : public OperatorCost {
public:
explicit UniqueCost(bool is_inputs_related) : OperatorCost(is_inputs_related) {}
UniqueCost() : OperatorCost(true) {}
~UniqueCost() override = default;
double GetCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override {
return GetForwardCommCost(inputs, outputs, stage_id) + GetBackwardCommCost(inputs, outputs, stage_id);
}
double GetForwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override;
double GetBackwardCommCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override;
double GetComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override {
return GetForwardComputationCost(inputs, outputs, stage_id) + GetBackwardComputationCost(inputs, outputs, stage_id);
}
double GetForwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t stage_id) const override;
double GetBackwardComputationCost(const std::vector<TensorInfo> &inputs, const std::vector<TensorInfo> &outputs,
int32_t) const override;
};
using UniqueCostPtr = std::shared_ptr<UniqueCost>;
class GatherV2Cost : public OperatorCost { class GatherV2Cost : public OperatorCost {
public: public:
explicit GatherV2Cost(bool is_inputs_related) : OperatorCost(is_inputs_related) {} explicit GatherV2Cost(bool is_inputs_related) : OperatorCost(is_inputs_related) {}

@ -182,6 +182,7 @@ REGISTER(DropoutInfo);
REGISTER(PackInfo); REGISTER(PackInfo);
REGISTER(ConcatInfo); REGISTER(ConcatInfo);
REGISTER(SplitInfo); REGISTER(SplitInfo);
REGISTER(UniqueInfo);
} // namespace parallel } // namespace parallel
} // namespace mindspore } // namespace mindspore

@ -151,6 +151,10 @@ Status GatherV2PInfo::GetAttrs() {
MS_LOG(ERROR) << name_ << ": The axis or offset must be 0 if manual split, bug got " << axis_; MS_LOG(ERROR) << name_ << ": The axis or offset must be 0 if manual split, bug got " << axis_;
return FAILED; return FAILED;
} }
if (std::find(inputs_shape_[1].begin(), inputs_shape_[1].end(), -1) != inputs_shape_[1].end()) {
dynamic_shape_indices_ = true;
}
return SUCCESS; return SUCCESS;
} }
@ -240,7 +244,7 @@ Status GatherV2PInfo::CheckStrategy(const StrategyPtr &strategy) {
// axis=0, index_shape(0)%param_strategy(0) must be 0 // axis=0, index_shape(0)%param_strategy(0) must be 0
Shape index_shape = inputs_shape_.at(1); Shape index_shape = inputs_shape_.at(1);
if ((axis_ == 0) && (index_shape.at(0) % param_strategy.at(0) != 0)) { if ((axis_ == 0) && (index_shape.at(0) % param_strategy.at(0) != 0) && !dynamic_shape_indices_) {
MS_LOG(DEBUG) << name_ << ": index_shape(0) can't be divided by param_strategy(0)."; MS_LOG(DEBUG) << name_ << ": index_shape(0) can't be divided by param_strategy(0).";
return FAILED; return FAILED;
} }
@ -357,13 +361,7 @@ Status GatherV2PInfo::InferDevMatrixShape() {
return SUCCESS; return SUCCESS;
} }
Status GatherV2PInfo::InferTensorMap() { void GatherV2PInfo::InferInputsTensorMap() {
if (manual_split_) {
inputs_tensor_map_.push_back({1, 0});
inputs_tensor_map_.push_back({-1, 1});
outputs_tensor_map_.push_back({-1, 1, 0});
return SUCCESS;
}
// infer input tensor map // infer input tensor map
// param_strategy(axis) != 1 // param_strategy(axis) != 1
size_t param_size = inputs_shape_.at(0).size(); size_t param_size = inputs_shape_.at(0).size();
@ -373,7 +371,7 @@ Status GatherV2PInfo::InferTensorMap() {
Shape tensor_map_params; Shape tensor_map_params;
auto param_strategy = strategy_->GetInputDim().at(0); auto param_strategy = strategy_->GetInputDim().at(0);
if (param_strategy.at(IntToSize(axis_)) != 1) { if (param_strategy.at(IntToSize(axis_)) != 1) {
tensor_map_index.insert(tensor_map_index.begin(), index_size, -1); tensor_map_index.insert(tensor_map_index.begin(), index_size, MAP_NONE);
for (size_t i = 0; i < param_size; ++i) { for (size_t i = 0; i < param_size; ++i) {
tensor_map_params.push_back(SizeToInt(i)); tensor_map_params.push_back(SizeToInt(i));
} }
@ -386,9 +384,17 @@ Status GatherV2PInfo::InferTensorMap() {
tensor_map_index.push_back(SizeToInt(index_size - i - 1)); tensor_map_index.push_back(SizeToInt(index_size - i - 1));
} }
} }
inputs_tensor_map_.emplace_back(std::move(tensor_map_params));
inputs_tensor_map_.emplace_back(std::move(tensor_map_index));
}
void GatherV2PInfo::InferOutputsTensorMap() {
// infer output tensor map // infer output tensor map
size_t param_size = inputs_shape_.at(0).size();
size_t index_size = inputs_shape_.at(1).size();
size_t total_size = param_size + index_size;
Shape tensor_map_out; Shape tensor_map_out;
auto param_strategy = strategy_->GetInputDim().at(0);
if (param_strategy.at(IntToSize(axis_)) == 1) { if (param_strategy.at(IntToSize(axis_)) == 1) {
// param_strategy(axis) == 1 // param_strategy(axis) == 1
for (size_t i = 0; i < param_size; ++i) { for (size_t i = 0; i < param_size; ++i) {
@ -403,25 +409,40 @@ Status GatherV2PInfo::InferTensorMap() {
} else { } else {
// param_strategy(axis) != 1 // param_strategy(axis) != 1
if (axis_ == 0) { if (axis_ == 0) {
tensor_map_out.insert(tensor_map_out.end(), 0); if (dynamic_shape_indices_) {
tensor_map_out.insert(tensor_map_out.end(), index_size - 1, -1); tensor_map_out.insert(tensor_map_out.end(), MAP_NONE);
} else {
tensor_map_out.insert(tensor_map_out.end(), 0);
}
tensor_map_out.insert(tensor_map_out.end(), index_size - 1, MAP_NONE);
for (size_t i = 1; i < param_size; ++i) { for (size_t i = 1; i < param_size; ++i) {
tensor_map_out.push_back(i); tensor_map_out.push_back(i);
} }
} else { } else {
for (size_t i = 0; i < param_size; ++i) { for (size_t i = 0; i < param_size; ++i) {
if (i == IntToSize(axis_)) { if (i == IntToSize(axis_)) {
tensor_map_out.insert(tensor_map_out.end(), index_size, -1); tensor_map_out.insert(tensor_map_out.end(), index_size, MAP_NONE);
} else { } else {
if (i == 0 && dynamic_shape_indices_) {
tensor_map_out.push_back(MAP_NONE);
}
tensor_map_out.push_back(SizeToInt(param_size - i - 1)); tensor_map_out.push_back(SizeToInt(param_size - i - 1));
} }
} }
} }
} }
inputs_tensor_map_.emplace_back(std::move(tensor_map_params));
inputs_tensor_map_.emplace_back(std::move(tensor_map_index));
outputs_tensor_map_.emplace_back(std::move(tensor_map_out)); outputs_tensor_map_.emplace_back(std::move(tensor_map_out));
}
Status GatherV2PInfo::InferTensorMap() {
if (manual_split_) {
inputs_tensor_map_.push_back({1, 0});
inputs_tensor_map_.push_back({-1, 1});
outputs_tensor_map_.push_back({-1, 1, 0});
return SUCCESS;
}
InferInputsTensorMap();
InferOutputsTensorMap();
return SUCCESS; return SUCCESS;
} }

@ -57,6 +57,8 @@ class GatherV2PInfo : public OperatorInfo {
Status InferTensorInfo() override; Status InferTensorInfo() override;
Status InferDevMatrixShape() override; Status InferDevMatrixShape() override;
Status InferTensorMap() override; Status InferTensorMap() override;
void InferInputsTensorMap();
void InferOutputsTensorMap();
Status GetAttrs() override; Status GetAttrs() override;
Status ComputeReplaceGraph(const CNodePtr &cnode); Status ComputeReplaceGraph(const CNodePtr &cnode);
@ -77,6 +79,7 @@ class GatherV2PInfo : public OperatorInfo {
Shape out_dev_matrix_shape_; Shape out_dev_matrix_shape_;
Group group_; Group group_;
bool manual_split_ = false; bool manual_split_ = false;
bool dynamic_shape_indices_ = false;
std::vector<int64_t> param_split_shapes_; std::vector<int64_t> param_split_shapes_;
std::vector<int64_t> index_offsets_; std::vector<int64_t> index_offsets_;
}; };

@ -43,5 +43,6 @@
#include "frontend/parallel/ops_info/split_info.h" #include "frontend/parallel/ops_info/split_info.h"
#include "frontend/parallel/ops_info/pack_info.h" #include "frontend/parallel/ops_info/pack_info.h"
#include "frontend/parallel/ops_info/broadcast_to_info.h" #include "frontend/parallel/ops_info/broadcast_to_info.h"
#include "frontend/parallel/ops_info/unique_info.h"
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_ #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_

@ -48,6 +48,9 @@ constexpr size_t DROPOUT_DO_MASK_KEEP_PROB_INDEX = 3;
constexpr size_t SoftmaxCrossEntropyWithLogitsAttrSize = 1; constexpr size_t SoftmaxCrossEntropyWithLogitsAttrSize = 1;
constexpr size_t SoftmaxCrossEntropyWithLogitsInputsSize = 2; constexpr size_t SoftmaxCrossEntropyWithLogitsInputsSize = 2;
constexpr size_t SoftmaxCrossEntropyWithLogitsOutputsSize = 2; constexpr size_t SoftmaxCrossEntropyWithLogitsOutputsSize = 2;
constexpr size_t UNIQUE_INPUTS_SIZE = 1;
constexpr size_t UNIQUE_INPUT_SIZE = 1;
constexpr size_t UNIQUE_OUTPUTS_SIZE = 2;
constexpr double EPS = 1e-6; constexpr double EPS = 1e-6;
constexpr double INF = 1e20; constexpr double INF = 1e20;
@ -285,6 +288,7 @@ constexpr char DEPTHWISE_CONV2D[] = "DepthwiseConv2D";
constexpr char ADD[] = "Add"; constexpr char ADD[] = "Add";
constexpr char DROPOUT[] = "Dropout"; constexpr char DROPOUT[] = "Dropout";
constexpr char KStridedSlice[] = "StridedSlice"; constexpr char KStridedSlice[] = "StridedSlice";
constexpr char UNIQUE[] = "Unique";
// Parallel don't care // Parallel don't care
constexpr char TUPLE_GETITEM[] = "tuple_getitem"; constexpr char TUPLE_GETITEM[] = "tuple_getitem";

@ -0,0 +1,192 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "frontend/parallel/ops_info/unique_info.h"
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "ir/value.h"
#include "frontend/parallel/device_matrix.h"
#include "frontend/parallel/strategy.h"
#include "frontend/parallel/context.h"
#include "frontend/parallel/tensor_layout/tensor_redistribution.h"
namespace mindspore {
namespace parallel {
/*
* unique has one input, two outputs. Currently, unique cannot be split.
*/
Status UniqueInfo::InferTensorMap() {
MS_EXCEPTION_IF_NULL(ParallelContext::GetInstance());
for (auto shp : inputs_shape_) {
TensorMap out_tensor_map;
TensorMap in_tensor_map;
for (size_t i = 0; i < shp.size(); ++i) {
in_tensor_map.push_back(MAP_NONE);
out_tensor_map.push_back(MAP_NONE);
}
inputs_tensor_map_.push_back(in_tensor_map);
outputs_tensor_map_.push_back(out_tensor_map);
outputs_tensor_map_.push_back(out_tensor_map);
}
return SUCCESS;
}
Status UniqueInfo::InferTensorLayout(TensorLayouts *inputs_layout, TensorLayouts *outputs_layout) {
if (inputs_layout == nullptr || outputs_layout == nullptr) {
MS_LOG(ERROR) << name_ << " : The layout is null.";
return FAILED;
}
TensorLayout input_layout;
TensorLayout output_layout;
TensorLayout index_layout;
if ((input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) ||
(output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) ||
(index_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[1], outputs_shape_[1]) != SUCCESS)) {
return FAILED;
}
inputs_layout->push_back(input_layout);
outputs_layout->push_back(output_layout);
outputs_layout->push_back(index_layout);
return SUCCESS;
}
Status UniqueInfo::InferTensorInfo() {
TensorLayouts inputs_layout;
TensorLayouts outputs_layout;
if (InferTensorLayout(&inputs_layout, &outputs_layout) != SUCCESS) {
return FAILED;
}
for (size_t i = 0; i < inputs_layout.size(); ++i) {
TensorInfo input_tensor_info(inputs_layout[i]);
inputs_tensor_info_.push_back(input_tensor_info);
}
for (size_t i = 0; i < outputs_layout.size(); ++i) {
TensorInfo output_tensor_info(outputs_layout[i]);
outputs_tensor_info_.push_back(output_tensor_info);
}
return SUCCESS;
}
Status UniqueInfo::InferDevMatrixShape() {
dev_matrix_shape_.push_back(dev_num_);
return SUCCESS;
}
Status UniqueInfo::Init(const StrategyPtr &strategy) {
if (InitWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Init failed";
return FAILED;
}
MS_LOG(INFO) << name_ << " : Init success";
return SUCCESS;
}
Status UniqueInfo::CheckStrategy(const StrategyPtr &strategy) {
Strategys stras = strategy->GetInputDim();
if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": Invalid strategy.";
return FAILED;
}
for (Dimensions stra : stras) {
if (stra.size() != UNIQUE_INPUT_SIZE) {
MS_LOG(ERROR) << name_ << " : Invalid strategy.";
return FAILED;
}
}
int32_t stage = strategy->GetInputStage();
int32_t dev_num = SizeToInt(g_device_manager->GetDeviceListByStageId(stage).size());
dev_num_ = dev_num;
if (stras[0][0] != 1) {
MS_LOG(ERROR) << "Currently, unique only support repeat calculate in all devices";
return FAILED;
}
return SUCCESS;
}
Status UniqueInfo::GetAttrs() {
if ((inputs_shape_.size() != UNIQUE_INPUTS_SIZE) || (outputs_shape_.size() != UNIQUE_OUTPUTS_SIZE)) {
MS_LOG(ERROR) << name_ << ": Inputs shape size " << inputs_shape_.size() << " or outputs shape size "
<< outputs_shape_.size() << " is wrong.";
return FAILED;
}
return SUCCESS;
}
Status UniqueInfo::InferMirrorOps() {
mirror_ops_.clear();
Shape tensor_map = inputs_tensor_map_[0];
std::vector<Group> group;
if (CreateGroupByTensorMap(tensor_map, &group) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Create group failed.";
return FAILED;
}
OperatorVector mirror_op;
if (group.empty()) {
MS_LOG(INFO) << name_ << " : The mirror ops is empty.";
return SUCCESS;
} else {
mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum());
mirror_ops_.push_back(mirror_op);
std::string group_name = group[0].name();
MS_LOG(INFO) << name_ << " : Create the mirror ops success, the group name is " << group_name;
}
return SUCCESS;
}
Status UniqueInfo::InitForCostModel(const StrategyPtr &strategy) {
if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) {
MS_LOG(ERROR) << name_ << " : Init for cost model failed.";
return FAILED;
}
MS_LOG(INFO) << name_ << " : Init for cost model success.";
return SUCCESS;
}
Status UniqueInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); }
Status UniqueInfo::GenerateStrategies(int32_t stage_id) {
if (inputs_shape_.size() != UNIQUE_INPUTS_SIZE) {
return FAILED;
}
if (inputs_shape_[0].size() != UNIQUE_INPUT_SIZE) {
return FAILED;
}
Shape input0_split;
input0_split.emplace_back(0);
Shapes splittable_inputs = {input0_split};
std::vector<StrategyPtr> sp_vector;
if (GenerateStrategiesForIndependentInputs(stage_id, inputs_shape_, splittable_inputs, &sp_vector) != SUCCESS) {
MS_LOG(ERROR) << name_ << ": GenerateStrategiesForIndependentInputs failed";
return FAILED;
}
size_t success = 0;
for (auto &sp : sp_vector) {
if (SetCostUnderStrategy(sp) == SUCCESS) {
success++;
MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy.";
PrintStrategy(sp);
}
}
return SUCCESS;
}
} // namespace parallel
} // namespace mindspore

@ -0,0 +1,60 @@
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNIQUE_INFO_H_
#define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNIQUE_INFO_H_
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "frontend/parallel/auto_parallel/operator_costmodel.h"
#include "frontend/parallel/ops_info/operator_info.h"
#include "frontend/parallel/strategy.h"
namespace mindspore {
namespace parallel {
class UniqueInfo : public OperatorInfo {
public:
UniqueInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape,
const PrimitiveAttrs &attrs)
: OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<GetNextCost>(false)) {}
~UniqueInfo() override = default;
Status Init(const StrategyPtr &strategy) override;
Status SetCostUnderStrategy(const StrategyPtr &strategy) override;
Status InitForCostModel(const StrategyPtr &strategy) override;
Status GenerateStrategies(int32_t stage_id) override;
protected:
Status CheckStrategy(const StrategyPtr &strategy) override;
Status GetAttrs() override;
Status InferTensorMap() override;
Status InferTensorLayout(TensorLayouts *inputs_layout, TensorLayouts *outputs_layout);
Status InferTensorInfo() override;
Status InferDevMatrixShape() override;
Status InferMirrorOps() override;
Status InferForwardCommunication() override { return SUCCESS; }
Status InferAsLossDivisor() override { return SUCCESS; }
private:
int32_t dev_num_ = 1;
};
} // namespace parallel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_UNIQUE_INFO_H_

@ -312,7 +312,7 @@ bool IsSplittableOperator(const std::string &op_name) {
EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT, BROADCAST_TO, ABS, ACOSH, ASIN, ASINH, ATAN, ATANH, CEIL, COSH, EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT, BROADCAST_TO, ABS, ACOSH, ASIN, ASINH, ATAN, ATANH, CEIL, COSH,
EXPM1, LOG1P, SIN, SINH, TAN, RSQRT, INV, RECIPROCAL, ROUND, FLOOR, SIGN, ERF, ERFC, ZEROSLIKE, ONESLIKE, EXPM1, LOG1P, SIN, SINH, TAN, RSQRT, INV, RECIPROCAL, ROUND, FLOOR, SIGN, ERF, ERFC, ZEROSLIKE, ONESLIKE,
BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2, BESSELI0E, BESSELI1E, FLOORMOD, ASSIGN, ASSIGN_ADD, ATAN2, DIVNONAN, LOGICALAND, LOGICALOR, ELU, RELU6, RELUV2,
SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD}; SOFTPLUS, SOFTSIGN, GREATEREQUAL, LESSEQUAL, LESS, APPROXIMATEEQUAL, MOD, UNIQUE};
// clang-format on // clang-format on
auto iter = splittable_op.find(op_name); auto iter = splittable_op.find(op_name);

@ -39,7 +39,7 @@ Status Arrangement::Init(const Shape &array) {
} }
bool Arrangement::IsValidArrangement() { bool Arrangement::IsValidArrangement() {
return !std::any_of(array_.begin(), array_.end(), [](int64_t value) { return value <= 0; }); return !std::any_of(array_.begin(), array_.end(), [](int64_t value) { return value <= 0 && value != -1; });
} }
void Arrangement::ComputeSize() { void Arrangement::ComputeSize() {

@ -21,7 +21,19 @@
namespace mindspore { namespace mindspore {
namespace parallel { namespace parallel {
Status RedistributionLayoutTransfer::CheckValidTransfer() { return Status::SUCCESS; } Status RedistributionLayoutTransfer::CheckValidTransfer() {
Shape from_shape = from_in_.tensor_shape().array();
if (std::find(from_shape.begin(), from_shape.end(), -1) != from_shape.end()) {
is_dynamic_shape_ = true;
if (from_in_ != to_in_) {
MS_LOG(ERROR) << "In dynamic shape scene, the from_tensor_shape should be equal to to_tensor_shape";
MS_LOG(ERROR) << "from_in layout" << from_in_.ToString();
MS_LOG(ERROR) << "to_in layout" << to_in_.ToString();
return Status::FAILED;
}
}
return Status::SUCCESS;
}
/* /*
* unify device arrangement between in_layout and out_layout * unify device arrangement between in_layout and out_layout

@ -29,10 +29,12 @@ class RedistributionLayoutTransfer : public LayoutTransfer {
RedistributionLayoutTransfer() = default; RedistributionLayoutTransfer() = default;
~RedistributionLayoutTransfer() override = default; ~RedistributionLayoutTransfer() override = default;
std::shared_ptr<ReshapeLayoutTransfer> UnifyDeviceArrangementAndTensorShape() const; std::shared_ptr<ReshapeLayoutTransfer> UnifyDeviceArrangementAndTensorShape() const;
bool IsDynamicShape() const { return is_dynamic_shape_; }
private: private:
Status CheckValidTransfer() override; Status CheckValidTransfer() override;
std::shared_ptr<ReshapeLayoutTransfer> UnifyDeviceArrangement() const; std::shared_ptr<ReshapeLayoutTransfer> UnifyDeviceArrangement() const;
bool is_dynamic_shape_ = false;
}; };
} // namespace parallel } // namespace parallel
} // namespace mindspore } // namespace mindspore

@ -357,6 +357,10 @@ bool TensorLayout::operator==(const TensorLayout &t1) const {
return (IsSameDeviceArrangement(t1) && IsSameTensorMap(t1) && IsSameTensorShape(t1)); return (IsSameDeviceArrangement(t1) && IsSameTensorMap(t1) && IsSameTensorShape(t1));
} }
bool TensorLayout::operator!=(const TensorLayout &t1) const {
return !(IsSameDeviceArrangement(t1) && IsSameTensorMap(t1) && IsSameTensorShape(t1));
}
/* /*
* remove elements equal to 1 in tensor_shape, if all elements are 1, squeeze the tensor_shape to [ 1 ] * remove elements equal to 1 in tensor_shape, if all elements are 1, squeeze the tensor_shape to [ 1 ]
* example 1: * example 1:

@ -82,6 +82,8 @@ class TensorLayout {
bool operator==(const TensorLayout &t1) const; bool operator==(const TensorLayout &t1) const;
bool operator!=(const TensorLayout &t1) const;
bool TensorShapeCanBeExpanded(const Arrangement &expanded_shape) const; bool TensorShapeCanBeExpanded(const Arrangement &expanded_shape) const;
std::shared_ptr<Arrangement> ComputeExpandedTensorShape(const Arrangement &expand_shape) const; std::shared_ptr<Arrangement> ComputeExpandedTensorShape(const Arrangement &expand_shape) const;

@ -82,17 +82,24 @@ RedistributionOpListPtr TensorRedistribution::InferTensorRedistributionOperatorL
if (status != Status::SUCCESS) { if (status != Status::SUCCESS) {
return nullptr; return nullptr;
} }
std::shared_ptr<ReshapeLayoutTransfer> ptr = layout_transfer.UnifyDeviceArrangementAndTensorShape(); TensorLayout from_layout;
if (ptr == nullptr) { TensorLayout to_layout;
MS_LOG(ERROR) << "Infer tensor layout return nullptr!"; if (layout_transfer.IsDynamicShape()) {
return nullptr; from_layout = layout_transfer.from_in();
} to_layout = layout_transfer.to_in();
if (!ptr->ExpandAble()) { } else {
expand_able_ = false; std::shared_ptr<ReshapeLayoutTransfer> ptr = layout_transfer.UnifyDeviceArrangementAndTensorShape();
return InferTensorRedistributionOperatorListUnExpand(is_cost_model); if (ptr == nullptr) {
MS_LOG(ERROR) << "Infer tensor layout return nullptr!";
return nullptr;
}
if (!ptr->ExpandAble()) {
expand_able_ = false;
return InferTensorRedistributionOperatorListUnExpand(is_cost_model);
}
from_layout = ptr->from_in();
to_layout = ptr->to_in();
} }
TensorLayout from_layout = ptr->from_in();
TensorLayout to_layout = ptr->to_in();
MS_LOG(DEBUG) << "reshape from_layout " << from_layout.ToString(); MS_LOG(DEBUG) << "reshape from_layout " << from_layout.ToString();
MS_LOG(DEBUG) << "reshape to_layout " << to_layout.ToString(); MS_LOG(DEBUG) << "reshape to_layout " << to_layout.ToString();
MS_LOG(DEBUG) << "reshape from_origin_ " << from_origin_.ToString(); MS_LOG(DEBUG) << "reshape from_origin_ " << from_origin_.ToString();

@ -33,6 +33,7 @@ reduce_sum = P.ReduceSum()
unsorted_segment_sum = P.UnsortedSegmentSum() unsorted_segment_sum = P.UnsortedSegmentSum()
transpose = P.Transpose() transpose = P.Transpose()
shape_op = P.Shape() shape_op = P.Shape()
dyn_shape_op = P.DynamicShape()
reshape = P.Reshape() reshape = P.Reshape()
size_op = P.Size() size_op = P.Size()
invert_permutation = P.InvertPermutation() invert_permutation = P.InvertPermutation()
@ -365,7 +366,10 @@ def get_bprop_gather_v2(self):
# Example: out_shape:(3,2,3) axis 1 -> (1,0,2) # Example: out_shape:(3,2,3) axis 1 -> (1,0,2)
perm_1 = _generate_shape_index(out_shp, ind_shp, axis) perm_1 = _generate_shape_index(out_shp, ind_shp, axis)
values_transpose = transpose(dout, perm_1) values_transpose = transpose(dout, perm_1)
params_grad = unsorted_segment_sum(values_transpose, indices, shape_op(x)[axis]) if -1 in shape_op(x):
params_grad = unsorted_segment_sum(values_transpose, indices, dyn_shape_op(x)[axis])
else:
params_grad = unsorted_segment_sum(values_transpose, indices, shape_op(x)[axis])
# Example: out_shape:(3,2,3) axis 2 -> (1,2,0) # Example: out_shape:(3,2,3) axis 2 -> (1,2,0)
perm_2 = _generate_inverse_index(x_shp, axis) perm_2 = _generate_inverse_index(x_shp, axis)
params_grad = transpose(params_grad, perm_2) params_grad = transpose(params_grad, perm_2)

@ -0,0 +1,118 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.common.parameter import Parameter
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer
from mindspore.nn import TrainOneStepCell, Momentum
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x):
predict = self.network(x)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x):
return grad_all(self.network)(x)
def test_unique_column_split():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.unique = P.Unique().shard(((1,),))
self.relu = P.ReLU()
self.mul = P.Mul()
self.embedding_lookp = P.GatherV2().shard(((1, 8), (1,)))
self.embedding_table = Parameter(initializer('normal', [2000, 128]),
name='embedding_table')
self.gatherv2 = P.GatherV2().shard(((1, 8), (1,)))
self.reshape = P.Reshape()
self.matmul = P.MatMul()
self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight")
def construct(self, indices):
indices_flatten = self.reshape(indices, (-1,))
unique_id, unique_idx = self.unique(indices_flatten)
unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0)
weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0)
weight = self.reshape(weight_flatten, (32, 64, 128))
vx = self.mul(weight, self.mul_weight)
return vx
size = 8
context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="auto_parallel")
x = Tensor(np.ones([32, 64]), dtype=ms.int32)
net = Net()
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_executor.compile(train_net, x)
def test_unique_row_split():
class Net(nn.Cell):
def __init__(self):
super().__init__()
self.unique = P.Unique().shard(((1,),))
self.relu = P.ReLU()
self.mul = P.Mul()
self.embedding_lookp = P.GatherV2().shard(((8, 1), (1,)))
self.embedding_table = Parameter(initializer('normal', [2000, 128]),
name='embedding_table')
self.gatherv2 = P.GatherV2().shard(((1, 1), (8,)))
self.reshape = P.Reshape()
self.matmul = P.MatMul()
self.mul_weight = Parameter(Tensor(np.full([32, 64, 1], 0.5, dtype=np.float32)), name="mul_weight")
def construct(self, indices):
indices_flatten = self.reshape(indices, (-1,))
unique_id, unique_idx = self.unique(indices_flatten)
unique_id_weight = self.embedding_lookp(self.embedding_table, unique_id, 0)
weight_flatten = self.gatherv2(unique_id_weight, unique_idx, 0)
weight = self.reshape(weight_flatten, (32, 64, 128))
vx = self.mul(weight, self.mul_weight)
return vx
size = 8
context.set_auto_parallel_context(device_num=size, global_rank=0, parallel_mode="stand_alone")
x = Tensor(np.ones([32, 64]), dtype=ms.int32)
net = Net()
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_net = TrainOneStepCell(net, optimizer)
train_net.set_auto_parallel()
train_net.set_train()
_executor.compile(train_net, x)
Loading…
Cancel
Save