|
|
@ -3619,6 +3619,12 @@ class EditDistance(PrimitiveWithInfer):
|
|
|
|
Tensor, a dense tensor with rank `R-1` and float32 data type.
|
|
|
|
Tensor, a dense tensor with rank `R-1` and float32 data type.
|
|
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
>>> import numpy as np
|
|
|
|
|
|
|
|
>>> from mindspore import context
|
|
|
|
|
|
|
|
>>> from mindspore import Tensor
|
|
|
|
|
|
|
|
>>> import mindspore.nn as nn
|
|
|
|
|
|
|
|
>>> import mindspore.ops.operations as P
|
|
|
|
|
|
|
|
>>> context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
>>> class EditDistance(nn.Cell):
|
|
|
|
>>> class EditDistance(nn.Cell):
|
|
|
|
>>> def __init__(self, hypothesis_shape, truth_shape, normalize=True):
|
|
|
|
>>> def __init__(self, hypothesis_shape, truth_shape, normalize=True):
|
|
|
|
>>> super(EditDistance, self).__init__()
|
|
|
|
>>> super(EditDistance, self).__init__()
|
|
|
@ -3645,6 +3651,7 @@ class EditDistance(PrimitiveWithInfer):
|
|
|
|
def __init__(self, normalize=True):
|
|
|
|
def __init__(self, normalize=True):
|
|
|
|
"""Initialize EditDistance"""
|
|
|
|
"""Initialize EditDistance"""
|
|
|
|
self.normalize = validator.check_value_type("normalize", normalize, [bool], self.name)
|
|
|
|
self.normalize = validator.check_value_type("normalize", normalize, [bool], self.name)
|
|
|
|
|
|
|
|
self.set_const_input_indexes([2, 5])
|
|
|
|
|
|
|
|
|
|
|
|
def __infer__(self, h_indices, h_values, h_shape, truth_indices, truth_values, truth_shape):
|
|
|
|
def __infer__(self, h_indices, h_values, h_shape, truth_indices, truth_values, truth_shape):
|
|
|
|
validator.check_const_input('hypothesis_shape', h_shape['value'], self.name)
|
|
|
|
validator.check_const_input('hypothesis_shape', h_shape['value'], self.name)
|
|
|
|