fix api bugs

pull/13337/head
yingchen 4 years ago
parent 4c9ad93e13
commit d582883c03

@ -293,7 +293,7 @@ class Tensor(Tensor_):
@property @property
def dtype(self): def dtype(self):
"""Returns the dtype of the tensor (:class:`mindspore.dtype`).""" """Return the dtype of the tensor (:class:`mindspore.dtype`)."""
return self._dtype return self._dtype
@property @property
@ -303,7 +303,7 @@ class Tensor(Tensor_):
@property @property
def ndim(self): def ndim(self):
"""Returns the number of tensor dimensions.""" """Return the number of tensor dimensions."""
return len(self._shape) return len(self._shape)
@property @property
@ -313,22 +313,22 @@ class Tensor(Tensor_):
@property @property
def itemsize(self): def itemsize(self):
"""Returns the length of one tensor element in bytes.""" """Return the length of one tensor element in bytes."""
return self._itemsize return self._itemsize
@property @property
def strides(self): def strides(self):
"""Returns the tuple of bytes to step in each dimension when traversing a tensor.""" """Return the tuple of bytes to step in each dimension when traversing a tensor."""
return self._strides return self._strides
@property @property
def nbytes(self): def nbytes(self):
"""Returns the total number of bytes taken by the tensor.""" """Return the total number of bytes taken by the tensor."""
return self._nbytes return self._nbytes
@property @property
def T(self): def T(self):
"""Returns the transposed tensor.""" """Return the transposed tensor."""
return self.transpose() return self.transpose()
@property @property
@ -439,7 +439,7 @@ class Tensor(Tensor_):
def mean(self, axis=(), keep_dims=False): def mean(self, axis=(), keep_dims=False):
""" """
Reduces a dimension of a tensor by averaging all elements in the dimension. Reduce a dimension of a tensor by averaging all elements in the dimension.
Args: Args:
axis (Union[None, int, tuple(int), list(int)]): Dimensions of reduction, axis (Union[None, int, tuple(int), list(int)]): Dimensions of reduction,
@ -456,7 +456,7 @@ class Tensor(Tensor_):
def transpose(self, *axes): def transpose(self, *axes):
r""" r"""
Returns a view of the tensor with axes transposed. Return a view of the tensor with axes transposed.
For a 1-D tensor this has no effect, as a transposed vector is simply the For a 1-D tensor this has no effect, as a transposed vector is simply the
same vector. For a 2-D tensor, this is a standard matrix transpose. For a same vector. For a 2-D tensor, this is a standard matrix transpose. For a
@ -480,7 +480,7 @@ class Tensor(Tensor_):
def reshape(self, *shape): def reshape(self, *shape):
""" """
Gives a new shape to a tensor without changing its data. Give a new shape to a tensor without changing its data.
Args: Args:
shape(Union[int, tuple(int), list(int)]): The new shape should be compatible shape(Union[int, tuple(int), list(int)]): The new shape should be compatible
@ -497,7 +497,7 @@ class Tensor(Tensor_):
def ravel(self): def ravel(self):
""" """
Returns a contiguous flattened tensor. Return a contiguous flattened tensor.
Returns: Returns:
Tensor, a 1-D tensor, containing the same elements of the input. Tensor, a 1-D tensor, containing the same elements of the input.
@ -508,7 +508,7 @@ class Tensor(Tensor_):
def flatten(self, order='C'): def flatten(self, order='C'):
r""" r"""
Returns a copy of the tensor collapsed into one dimension. Return a copy of the tensor collapsed into one dimension.
Args: Args:
order (str, optional): Can choose between 'C' and 'F'. 'C' means to order (str, optional): Can choose between 'C' and 'F'. 'C' means to
@ -531,7 +531,7 @@ class Tensor(Tensor_):
def swapaxes(self, axis1, axis2): def swapaxes(self, axis1, axis2):
""" """
Interchanges two axes of a tensor. Interchange two axes of a tensor.
Args: Args:
axis1 (int): First axis. axis1 (int): First axis.
@ -561,7 +561,7 @@ class Tensor(Tensor_):
def squeeze(self, axis=None): def squeeze(self, axis=None):
""" """
Removes single-dimensional entries from the shape of a tensor. Remove single-dimensional entries from the shape of a tensor.
Args: Args:
axis (Union[None, int, list(int), tuple(int)], optional): Default is None. axis (Union[None, int, list(int), tuple(int)], optional): Default is None.
@ -577,7 +577,7 @@ class Tensor(Tensor_):
def astype(self, dtype, copy=True): def astype(self, dtype, copy=True):
""" """
Returns a copy of the tensor, casted to a specified type. Return a copy of the tensor, casted to a specified type.
Args: Args:
dtype (Union[:class:`mindspore.dtype`, str]): Designated tensor dtype, can be in format dtype (Union[:class:`mindspore.dtype`, str]): Designated tensor dtype, can be in format

@ -175,7 +175,7 @@ def get_local_rank_size(group=GlobalComm.WORLD_COMM_GROUP):
def get_world_rank_from_group_rank(group, group_rank_id): def get_world_rank_from_group_rank(group, group_rank_id):
""" """
Gets the rank ID in the world communication group corresponding to Get the rank ID in the world communication group corresponding to
the rank ID in the specified user communication group. the rank ID in the specified user communication group.
Note: Note:

@ -43,7 +43,7 @@ def create_quant_config(quant_observer=(nn.FakeQuantWithMinMaxObserver, nn.FakeQ
symmetric=(False, False), symmetric=(False, False),
narrow_range=(False, False)): narrow_range=(False, False)):
r""" r"""
Configs the observer type of weights and data flow with quant params. Config the observer type of weights and data flow with quant params.
Args: Args:
quant_observer (Union[Observer, list, tuple]): The observer type to do quantization. The first element represent quant_observer (Union[Observer, list, tuple]): The observer type to do quantization. The first element represent

@ -86,12 +86,12 @@ class _ThreadLocalInfo(threading.local):
@property @property
def reserve_class_name_in_scope(self): def reserve_class_name_in_scope(self):
"""Gets whether to save the network class name in the scope.""" """Get whether to save the network class name in the scope."""
return self._reserve_class_name_in_scope return self._reserve_class_name_in_scope
@reserve_class_name_in_scope.setter @reserve_class_name_in_scope.setter
def reserve_class_name_in_scope(self, reserve_class_name_in_scope): def reserve_class_name_in_scope(self, reserve_class_name_in_scope):
"""Sets whether to save the network class name in the scope.""" """Set whether to save the network class name in the scope."""
if not isinstance(reserve_class_name_in_scope, bool): if not isinstance(reserve_class_name_in_scope, bool):
raise ValueError( raise ValueError(
"Set reserve_class_name_in_scope value must be bool!") "Set reserve_class_name_in_scope value must be bool!")
@ -295,12 +295,12 @@ class _Context:
@property @property
def reserve_class_name_in_scope(self): def reserve_class_name_in_scope(self):
"""Gets whether to save the network class name in the scope.""" """Get whether to save the network class name in the scope."""
return self._thread_local_info.reserve_class_name_in_scope return self._thread_local_info.reserve_class_name_in_scope
@reserve_class_name_in_scope.setter @reserve_class_name_in_scope.setter
def reserve_class_name_in_scope(self, reserve_class_name_in_scope): def reserve_class_name_in_scope(self, reserve_class_name_in_scope):
"""Sets whether to save the network class name in the scope.""" """Set whether to save the network class name in the scope."""
self._thread_local_info.reserve_class_name_in_scope = reserve_class_name_in_scope self._thread_local_info.reserve_class_name_in_scope = reserve_class_name_in_scope
@property @property
@ -444,7 +444,7 @@ def set_auto_parallel_context(**kwargs):
def get_auto_parallel_context(attr_key): def get_auto_parallel_context(attr_key):
""" """
Gets auto parallel context attribute value according to the key. Get auto parallel context attribute value according to the key.
Args: Args:
attr_key (str): The key of the attribute. attr_key (str): The key of the attribute.
@ -512,7 +512,7 @@ def _check_target_specific_cfgs(device, arg_key):
enable_sparse=bool, max_call_depth=int, env_config_path=str) enable_sparse=bool, max_call_depth=int, env_config_path=str)
def set_context(**kwargs): def set_context(**kwargs):
""" """
Sets context for running environment. Set context for running environment.
Context should be configured before running your program. If there is no configuration, Context should be configured before running your program. If there is no configuration,
the "Ascend" device target will be used by default. GRAPH_MODE or the "Ascend" device target will be used by default. GRAPH_MODE or
@ -679,7 +679,7 @@ def set_context(**kwargs):
def get_context(attr_key): def get_context(attr_key):
""" """
Gets context attribute value according to the input key. Get context attribute value according to the input key.
Args: Args:
attr_key (str): The key of the attribute. attr_key (str): The key of the attribute.

@ -4812,7 +4812,7 @@ class _NumpySlicesDataset:
class NumpySlicesDataset(GeneratorDataset): class NumpySlicesDataset(GeneratorDataset):
""" """
Create a dataset with given data slices, mainly for loading Python data into dataset. Creates a dataset with given data slices, mainly for loading Python data into dataset.
This dataset can take in a sampler. 'sampler' and 'shuffle' are mutually exclusive. The table This dataset can take in a sampler. 'sampler' and 'shuffle' are mutually exclusive. The table
below shows what input arguments are allowed and their expected behavior. below shows what input arguments are allowed and their expected behavior.
@ -4911,7 +4911,7 @@ class _PaddedDataset:
class PaddedDataset(GeneratorDataset): class PaddedDataset(GeneratorDataset):
""" """
Create a dataset with filler data provided by user. Mainly used to add to the original data set Creates a dataset with filler data provided by user. Mainly used to add to the original data set
and assign it to the corresponding shard. and assign it to the corresponding shard.
Args: Args:

@ -162,7 +162,7 @@ class BoundingBoxAugment(ImageTensorOperation):
class CenterCrop(ImageTensorOperation): class CenterCrop(ImageTensorOperation):
""" """
Crops the input image at the center to the given size. Crop the input image at the center to the given size.
Args: Args:
size (Union[int, sequence]): The output size of the cropped image. size (Union[int, sequence]): The output size of the cropped image.
@ -417,7 +417,7 @@ class NormalizePad(ImageTensorOperation):
class Pad(ImageTensorOperation): class Pad(ImageTensorOperation):
""" """
Pads the image according to padding parameters. Pad the image according to padding parameters.
Args: Args:
padding (Union[int, sequence]): The number of pixels to pad the image. padding (Union[int, sequence]): The number of pixels to pad the image.

@ -827,7 +827,7 @@ def grayscale(img, num_output_channels):
def pad(img, padding, fill_value, padding_mode): def pad(img, padding, fill_value, padding_mode):
""" """
Pads the image according to padding parameters. Pad the image according to padding parameters.
Args: Args:
img (PIL image): Image to be padded. img (PIL image): Image to be padded.

@ -70,7 +70,7 @@ class Cifar100ToMR:
def run(self, fields=None): def run(self, fields=None):
""" """
Executes transformation from cifar100 to MindRecord. Execute transformation from cifar100 to MindRecord.
Args: Args:
fields (list[str]): A list of index field, e.g.["fine_label", "coarse_label"]. fields (list[str]): A list of index field, e.g.["fine_label", "coarse_label"].

@ -70,7 +70,7 @@ class Cifar10ToMR:
def run(self, fields=None): def run(self, fields=None):
""" """
Executes transformation from cifar10 to MindRecord. Execute transformation from cifar10 to MindRecord.
Args: Args:
fields (list[str], optional): A list of index fields, e.g.["label"] (default=None). fields (list[str], optional): A list of index fields, e.g.["label"] (default=None).

@ -119,7 +119,7 @@ class CsvToMR:
def run(self): def run(self):
""" """
Executes transformation from csv to MindRecord. Execute transformation from csv to MindRecord.
Returns: Returns:
MSRStatus, whether csv is successfully transformed to MindRecord. MSRStatus, whether csv is successfully transformed to MindRecord.

@ -120,7 +120,7 @@ class ImageNetToMR:
def run(self): def run(self):
""" """
Executes transformation from imagenet to MindRecord. Execute transformation from imagenet to MindRecord.
Returns: Returns:
MSRStatus, whether imagenet is successfully transformed to MindRecord. MSRStatus, whether imagenet is successfully transformed to MindRecord.

@ -123,7 +123,7 @@ class MnistToMR:
def _transform_train(self): def _transform_train(self):
""" """
Executes transformation from Mnist train part to MindRecord. Execute transformation from Mnist train part to MindRecord.
Returns: Returns:
MSRStatus, whether successfully written into MindRecord. MSRStatus, whether successfully written into MindRecord.
@ -171,7 +171,7 @@ class MnistToMR:
def _transform_test(self): def _transform_test(self):
""" """
Executes transformation from Mnist test part to MindRecord. Execute transformation from Mnist test part to MindRecord.
Returns: Returns:
MSRStatus, whether Mnist is successfully transformed to MindRecord. MSRStatus, whether Mnist is successfully transformed to MindRecord.
@ -220,7 +220,7 @@ class MnistToMR:
def run(self): def run(self):
""" """
Executes transformation from Mnist to MindRecord. Execute transformation from Mnist to MindRecord.
Returns: Returns:
MSRStatus, whether successfully written into MindRecord. MSRStatus, whether successfully written into MindRecord.

@ -75,7 +75,7 @@ def _check_inputs(learning_rate, decay_rate, total_step, step_per_epoch, decay_e
def exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False): def exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False):
r""" r"""
Calculate learning rate base on exponential decay function. Calculates learning rate base on exponential decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is: For the i-th step, the formula of computing decayed_learning_rate[i] is:
@ -118,7 +118,7 @@ def exponential_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch,
def natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False): def natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False):
r""" r"""
Calculate learning rate base on natural exponential decay function. Calculates learning rate base on natural exponential decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is: For the i-th step, the formula of computing decayed_learning_rate[i] is:
@ -162,7 +162,7 @@ def natural_exp_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch,
def inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False): def inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, decay_epoch, is_stair=False):
r""" r"""
Calculate learning rate base on inverse-time decay function. Calculates learning rate base on inverse-time decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is: For the i-th step, the formula of computing decayed_learning_rate[i] is:
@ -205,7 +205,7 @@ def inverse_decay_lr(learning_rate, decay_rate, total_step, step_per_epoch, deca
def cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch): def cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch):
r""" r"""
Calculate learning rate base on cosine decay function. Calculates learning rate base on cosine decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is: For the i-th step, the formula of computing decayed_learning_rate[i] is:
@ -257,7 +257,7 @@ def cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch):
def polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power, def polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power,
update_decay_epoch=False): update_decay_epoch=False):
r""" r"""
Calculate learning rate base on polynomial decay function. Calculates learning rate base on polynomial decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is: For the i-th step, the formula of computing decayed_learning_rate[i] is:
@ -332,7 +332,7 @@ def polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_e
def warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch): def warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch):
r""" r"""
Get learning rate warming up. Gets learning rate warming up.
For the i-th step, the formula of computing warmup_learning_rate[i] is: For the i-th step, the formula of computing warmup_learning_rate[i] is:

@ -38,7 +38,7 @@ __all__ = ['Dropout', 'Flatten', 'Dense', 'ClipByNorm', 'Norm', 'OneHot', 'Pad',
class L1Regularizer(Cell): class L1Regularizer(Cell):
r""" r"""
Apply l1 regularization to weights Applies l1 regularization to weights.
l1 regularization makes weights sparsity l1 regularization makes weights sparsity
@ -730,7 +730,7 @@ class ResizeBilinear(Cell):
class Unfold(Cell): class Unfold(Cell):
r""" r"""
Extract patches from images. Extracts patches from images.
The input tensor must be a 4-D tensor and the data format is NCHW. The input tensor must be a 4-D tensor and the data format is NCHW.
Args: Args:

@ -479,7 +479,7 @@ def _get_bbox(rank, shape, central_fraction):
class CentralCrop(Cell): class CentralCrop(Cell):
""" """
Crop the centeral region of the images with the central_fraction. Crops the centeral region of the images with the central_fraction.
Args: Args:
central_fraction (float): Fraction of size to crop. It must be float and in range (0.0, 1.0]. central_fraction (float): Fraction of size to crop. It must be float and in range (0.0, 1.0].

@ -1148,7 +1148,7 @@ class DenseQuant(Cell):
class _QuantActivation(Cell): class _QuantActivation(Cell):
r""" r"""
Base class for quantization aware training activation function. Add fake quantized operation Base class for quantization aware training activation function. Adds fake quantized operation
after activation operation. after activation operation.
""" """
@ -1232,7 +1232,7 @@ class ActQuant(_QuantActivation):
class TensorAddQuant(Cell): class TensorAddQuant(Cell):
r""" r"""
Add fake quantized operation after TensorAdd operation. Adds fake quantized operation after TensorAdd operation.
This part is a more detailed overview of TensorAdd operation. For more detials about Quantilization, This part is a more detailed overview of TensorAdd operation. For more detials about Quantilization,
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.
@ -1288,7 +1288,7 @@ class TensorAddQuant(Cell):
class MulQuant(Cell): class MulQuant(Cell):
r""" r"""
Add fake quantized operation after `Mul` operation. Adds fake quantized operation after `Mul` operation.
This part is a more detailed overview of `Mul` operation. For more detials about Quantilization, This part is a more detailed overview of `Mul` operation. For more detials about Quantilization,
please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`. please refer to :class:`mindspore.nn.FakeQuantWithMinMaxObserver`.

@ -18,7 +18,7 @@ import numpy as np
def auc(x, y, reorder=False): def auc(x, y, reorder=False):
""" """
Compute the Area Under the Curve (AUC) using the trapezoidal rule. This is a general function, given points on a Computes the Area Under the Curve (AUC) using the trapezoidal rule. This is a general function, given points on a
curve. For computing the area under the ROC-curve. curve. For computing the area under the ROC-curve.
Args: Args:

@ -21,7 +21,7 @@ from .metric import Metric
class BleuScore(Metric): class BleuScore(Metric):
""" """
Calculate BLEU score of machine translated text with one or more references. Calculates BLEU score of machine translated text with one or more references.
Args: Args:
n_gram (int): The n_gram value ranged from 1 to 4. Default: 4 n_gram (int): The n_gram value ranged from 1 to 4. Default: 4

@ -66,7 +66,7 @@ class _ROISpatialData(metaclass=ABCMeta):
class HausdorffDistance(Metric): class HausdorffDistance(Metric):
r""" r"""
Calculate the Hausdorff distance. Hausdorff distance is the maximum and minimum distance between two point sets. Calculates the Hausdorff distance. Hausdorff distance is the maximum and minimum distance between two point sets.
Given two feature sets A and B, the Hausdorff distance between two point sets A and B is defined as follows: Given two feature sets A and B, the Hausdorff distance between two point sets A and B is defined as follows:
.. math:: .. math::

@ -20,7 +20,7 @@ from .metric import Metric
class ROC(Metric): class ROC(Metric):
""" """
Calculate the ROC curve. It is suitable for solving binary classification and multi classification problems. Calculates the ROC curve. It is suitable for solving binary classification and multi classification problems.
In the case of multiclass, the values will be calculated based on a one-vs-the-rest approach. In the case of multiclass, the values will be calculated based on a one-vs-the-rest approach.
Args: Args:

@ -1671,7 +1671,7 @@ def flipud(m):
def fliplr(m): def fliplr(m):
""" """
Flip the entries in each row in the left/right direction. Flips the entries in each row in the left/right direction.
Columns are preserved, but appear in a different order than before. Columns are preserved, but appear in a different order than before.
Note: Note:

@ -126,7 +126,7 @@ class Randperm(PrimitiveWithInfer):
class NoRepeatNGram(PrimitiveWithInfer): class NoRepeatNGram(PrimitiveWithInfer):
""" """
Update log_probs with repeat n-grams. Updates log_probs with repeat n-grams.
During beam search, if consecutive `ngram_size` words exist in the generated word sequence, During beam search, if consecutive `ngram_size` words exist in the generated word sequence,
the consecutive `ngram_size` words will be avoided during subsequent prediction. the consecutive `ngram_size` words will be avoided during subsequent prediction.

@ -227,9 +227,9 @@ class InternalCallbackParam(dict):
class RunContext: class RunContext:
""" """
Provides information about the model. Provide information about the model.
Provides information about original request to model function. Provide information about original request to model function.
Callback objects can stop the loop by calling request_stop() of run_context. Callback objects can stop the loop by calling request_stop() of run_context.
Args: Args:
@ -252,7 +252,7 @@ class RunContext:
def request_stop(self): def request_stop(self):
""" """
Sets stop requirement during training. Set stop requirement during training.
Callbacks can use this function to request stop of iterations. Callbacks can use this function to request stop of iterations.
model.train() checks whether this is called or not. model.train() checks whether this is called or not.
@ -261,7 +261,7 @@ class RunContext:
def get_stop_requested(self): def get_stop_requested(self):
""" """
Returns whether a stop is requested or not. Return whether a stop is requested or not.
Returns: Returns:
bool, if true, model.train() stops iterations. bool, if true, model.train() stops iterations.

@ -202,7 +202,7 @@ class SummaryRecord:
def set_mode(self, mode): def set_mode(self, mode):
""" """
Sets the training phase. Different training phases affect data recording. Set the training phase. Different training phases affect data recording.
Args: Args:
mode (str): The mode to be set, which should be 'train' or 'eval'. When the mode is 'eval', mode (str): The mode to be set, which should be 'train' or 'eval'. When the mode is 'eval',

Loading…
Cancel
Save