optimize custom vector

pull/6713/head
jianghui58 4 years ago
parent 93d742732e
commit dcea00321a

@ -17,26 +17,24 @@
#define MINDSPORE_LITE_INTERNAL_INCLUDE_VECTOR_H #define MINDSPORE_LITE_INTERNAL_INCLUDE_VECTOR_H
#include <stdint.h> #include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stddef.h>
#include <initializer_list> #include <initializer_list>
#include "internal/include/string.h" #define DEFAULT_CAPACITY 4
#define DEFAULT_CAPACITY 1
struct MSTensor; struct MSTensor;
struct Node; struct Node;
template <typename T> template <typename T>
class Vector { class Vector {
private:
size_t size_;
size_t elem_size_;
size_t capacity_;
T *data_;
public: public:
Vector(); Vector();
explicit Vector(size_t size); explicit Vector(size_t size);
Vector(size_t size, const T &value);
Vector(const Vector<T> &vector); Vector(const Vector<T> &vector);
~Vector(); ~Vector();
@ -92,23 +90,29 @@ class Vector {
void reserve(size_t capacity); void reserve(size_t capacity);
Vector<T> &operator=(const Vector<T> &v); Vector<T> &operator=(const Vector<T> &v);
private:
size_t size_;
size_t elem_size_;
size_t capacity_;
T *data_;
}; };
template <typename T> template <typename T>
bool operator==(const Vector<T> &lhs, const Vector<T> &rhs) { bool operator==(const Vector<T> &lhs, const Vector<T> &rhs) {
if (lhs.size() != rhs.size()) { if (lhs.size() != rhs.size()) {
return false; return false;
} }
for (int i = 0; i < lhs.size(); ++i) { for (int i = 0; i < lhs.size(); ++i) {
if (lhs[i] != rhs[i]) { if (lhs[i] != rhs[i]) {
return false; return false;
}
} }
return true; }
return true;
} }
template <typename T> template <typename T>
bool operator!=(const Vector<T> &lhs, const Vector<T> &rhs) { bool operator!=(const Vector<T> &lhs, const Vector<T> &rhs) {
return !(lhs == rhs); return !(lhs == rhs);
} }
#endif // MINDSPORE_LITE_INTERNAL_INCLUDE_VECTOR_H #endif // MINDSPORE_LITE_INTERNAL_INCLUDE_VECTOR_H

File diff suppressed because it is too large Load Diff

@ -85,6 +85,7 @@ int DoMatMulInferShape(const TensorPtrVector &in_tensors, const TensorPtrVector
int *in_shape[2] = {input0->shape_.data(), input1->shape_.data()}; int *in_shape[2] = {input0->shape_.data(), input1->shape_.data()};
int out_format; int out_format;
int out_datatype; int out_datatype;
output->shape_.resize(input0->shape_.size());
int ret = MatMulInferShape(in_shape, 2, dim_size, output->shape_.data(), in_format, &out_format, in_datatype, int ret = MatMulInferShape(in_shape, 2, dim_size, output->shape_.data(), in_format, &out_format, in_datatype,
&out_datatype, param); &out_datatype, param);
if (ret != NNACL_OK) { if (ret != NNACL_OK) {
@ -134,16 +135,16 @@ int DoMatMul(const TensorPtrVector &in_tensors, const TensorPtrVector &out_tenso
LITE_LOG_ERROR("Malloc MatMulCPUKernelData failed"); LITE_LOG_ERROR("Malloc MatMulCPUKernelData failed");
return RET_MEMORY_FAILED; return RET_MEMORY_FAILED;
} }
kernel_data->a_c12_ptr_ kernel_data->a_c12_ptr_ =
= reinterpret_cast<float *>(allocator->Malloc(params->batch * params->row_12_ * params->deep_ * sizeof(float))); reinterpret_cast<float *>(allocator->Malloc(params->batch * params->row_12_ * params->deep_ * sizeof(float)));
if (kernel_data->a_c12_ptr_ == NULL) { if (kernel_data->a_c12_ptr_ == NULL) {
FreeMatMulKernelData(kernel_data, allocator); FreeMatMulKernelData(kernel_data, allocator);
return RET_MEMORY_FAILED; return RET_MEMORY_FAILED;
} }
memset(kernel_data->a_c12_ptr_, 0, params->row_12_ * params->deep_ * sizeof(float)); memset(kernel_data->a_c12_ptr_, 0, params->row_12_ * params->deep_ * sizeof(float));
kernel_data->b_r8_ptr_ kernel_data->b_r8_ptr_ =
= reinterpret_cast<float *>(allocator->Malloc(params->batch * params->col_8_ * params->deep_ * sizeof(float))); reinterpret_cast<float *>(allocator->Malloc(params->batch * params->col_8_ * params->deep_ * sizeof(float)));
if (kernel_data->b_r8_ptr_ == NULL) { if (kernel_data->b_r8_ptr_ == NULL) {
FreeMatMulKernelData(kernel_data, allocator); FreeMatMulKernelData(kernel_data, allocator);
return RET_MEMORY_FAILED; return RET_MEMORY_FAILED;
@ -173,4 +174,3 @@ int DoMatMul(const TensorPtrVector &in_tensors, const TensorPtrVector &out_tenso
return RET_OK; return RET_OK;
} }

@ -23,13 +23,12 @@
#include <assert.h> #include <assert.h>
#endif #endif
#ifndef Release #ifdef Debug
#define LITE_DEBUG_LOG(format, ...) \ #define LITE_DEBUG_LOG(format, ...) \
printf("[DEBUG] [%s %s] [%s] [%d] " format "\n", __DATE__, __TIME__, __FILE__, __LINE__, __VA_ARGS__) printf("[DEBUG] [%s %s] [%s] [%d] " format "\n", __DATE__, __TIME__, __FILE__, __LINE__, __VA_ARGS__)
#define LITE_INFO_LOG(format, ...) \ #define LITE_INFO_LOG(format, ...) \
printf("[INFO] [%s %s] [%s] [%d] " format "\n", __DATE__, __TIME__, __FILE__, __LINE__, __VA_ARGS__) printf("[INFO] [%s %s] [%s] [%d] " format "\n", __DATE__, __TIME__, __FILE__, __LINE__, __VA_ARGS__)
#define LITE_LOG_INFO(...) \ #define LITE_LOG_INFO(...) printf("[INFO] [%s %s] [%s] [%d] %s\n", __DATE__, __TIME__, __FILE__, __LINE__, __VA_ARGS__)
printf("[INFO] [%s %s] [%s] [%d] %s\n", __DATE__, __TIME__, __FILE__, __LINE__, __VA_ARGS__)
#define LITE_WARNING_LOG(format, ...) \ #define LITE_WARNING_LOG(format, ...) \
printf("[WARNING] [%s %s] [%s] [%d] " format "\n", __DATE__, __TIME__, __FILE__, __LINE__, __VA_ARGS__) printf("[WARNING] [%s %s] [%s] [%d] " format "\n", __DATE__, __TIME__, __FILE__, __LINE__, __VA_ARGS__)
#define LITE_ERROR_LOG(format, ...) \ #define LITE_ERROR_LOG(format, ...) \

Loading…
Cancel
Save