pull/2418/head
parent
55b1d6feef
commit
deb9694f63
@ -1,143 +0,0 @@
|
|||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# ============================================================================
|
|
||||||
"""GoogleNet"""
|
|
||||||
import mindspore.nn as nn
|
|
||||||
from mindspore.common.initializer import TruncatedNormal
|
|
||||||
from mindspore.ops import operations as P
|
|
||||||
|
|
||||||
|
|
||||||
def weight_variable():
|
|
||||||
"""Weight variable."""
|
|
||||||
return TruncatedNormal(0.02)
|
|
||||||
|
|
||||||
|
|
||||||
class Conv2dBlock(nn.Cell):
|
|
||||||
"""
|
|
||||||
Basic convolutional block
|
|
||||||
Args:
|
|
||||||
in_channles (int): Input channel.
|
|
||||||
out_channels (int): Output channel.
|
|
||||||
kernel_size (int): Input kernel size. Default: 1
|
|
||||||
stride (int): Stride size for the first convolutional layer. Default: 1.
|
|
||||||
padding (int): Implicit paddings on both sides of the input. Default: 0.
|
|
||||||
pad_mode (str): Padding mode. Optional values are "same", "valid", "pad". Default: "same".
|
|
||||||
Returns:
|
|
||||||
Tensor, output tensor.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0, pad_mode="same"):
|
|
||||||
super(Conv2dBlock, self).__init__()
|
|
||||||
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride,
|
|
||||||
padding=padding, pad_mode=pad_mode, weight_init=weight_variable(),
|
|
||||||
bias_init=False)
|
|
||||||
self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
|
|
||||||
self.relu = nn.ReLU()
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
x = self.conv(x)
|
|
||||||
x = self.bn(x)
|
|
||||||
x = self.relu(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
class Inception(nn.Cell):
|
|
||||||
"""
|
|
||||||
Inception Block
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, in_channels, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes):
|
|
||||||
super(Inception, self).__init__()
|
|
||||||
self.b1 = Conv2dBlock(in_channels, n1x1, kernel_size=1)
|
|
||||||
self.b2 = nn.SequentialCell([Conv2dBlock(in_channels, n3x3red, kernel_size=1),
|
|
||||||
Conv2dBlock(n3x3red, n3x3, kernel_size=3, padding=0)])
|
|
||||||
self.b3 = nn.SequentialCell([Conv2dBlock(in_channels, n5x5red, kernel_size=1),
|
|
||||||
Conv2dBlock(n5x5red, n5x5, kernel_size=3, padding=0)])
|
|
||||||
self.maxpool = P.MaxPoolWithArgmax(ksize=3, strides=1, padding="same")
|
|
||||||
self.b4 = Conv2dBlock(in_channels, pool_planes, kernel_size=1)
|
|
||||||
self.concat = P.Concat(axis=1)
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
branch1 = self.b1(x)
|
|
||||||
branch2 = self.b2(x)
|
|
||||||
branch3 = self.b3(x)
|
|
||||||
cell, argmax = self.maxpool(x)
|
|
||||||
branch4 = self.b4(cell)
|
|
||||||
_ = argmax
|
|
||||||
return self.concat((branch1, branch2, branch3, branch4))
|
|
||||||
|
|
||||||
|
|
||||||
class GooGLeNet(nn.Cell):
|
|
||||||
"""
|
|
||||||
Googlenet architecture
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, num_classes):
|
|
||||||
super(GooGLeNet, self).__init__()
|
|
||||||
self.conv1 = Conv2dBlock(3, 64, kernel_size=7, stride=2, padding=0)
|
|
||||||
self.maxpool1 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
|
||||||
|
|
||||||
self.conv2 = Conv2dBlock(64, 64, kernel_size=1)
|
|
||||||
self.conv3 = Conv2dBlock(64, 192, kernel_size=3, padding=0)
|
|
||||||
self.maxpool2 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
|
||||||
|
|
||||||
self.block3a = Inception(192, 64, 96, 128, 16, 32, 32)
|
|
||||||
self.block3b = Inception(256, 128, 128, 192, 32, 96, 64)
|
|
||||||
self.maxpool3 = P.MaxPoolWithArgmax(ksize=3, strides=2, padding="same")
|
|
||||||
|
|
||||||
self.block4a = Inception(480, 192, 96, 208, 16, 48, 64)
|
|
||||||
self.block4b = Inception(512, 160, 112, 224, 24, 64, 64)
|
|
||||||
self.block4c = Inception(512, 128, 128, 256, 24, 64, 64)
|
|
||||||
self.block4d = Inception(512, 112, 144, 288, 32, 64, 64)
|
|
||||||
self.block4e = Inception(528, 256, 160, 320, 32, 128, 128)
|
|
||||||
self.maxpool4 = P.MaxPoolWithArgmax(ksize=2, strides=2, padding="same")
|
|
||||||
|
|
||||||
self.block5a = Inception(832, 256, 160, 320, 32, 128, 128)
|
|
||||||
self.block5b = Inception(832, 384, 192, 384, 48, 128, 128)
|
|
||||||
|
|
||||||
self.mean = P.ReduceMean(keep_dims=True)
|
|
||||||
self.dropout = nn.Dropout(keep_prob=0.8)
|
|
||||||
self.flatten = nn.Flatten()
|
|
||||||
self.classifier = nn.Dense(1024, num_classes, weight_init=weight_variable(),
|
|
||||||
bias_init=weight_variable())
|
|
||||||
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
x = self.conv1(x)
|
|
||||||
x, argmax = self.maxpool1(x)
|
|
||||||
|
|
||||||
x = self.conv2(x)
|
|
||||||
x = self.conv3(x)
|
|
||||||
x, argmax = self.maxpool2(x)
|
|
||||||
|
|
||||||
x = self.block3a(x)
|
|
||||||
x = self.block3b(x)
|
|
||||||
x, argmax = self.maxpool3(x)
|
|
||||||
|
|
||||||
x = self.block4a(x)
|
|
||||||
x = self.block4b(x)
|
|
||||||
x = self.block4c(x)
|
|
||||||
x = self.block4d(x)
|
|
||||||
x = self.block4e(x)
|
|
||||||
x, argmax = self.maxpool4(x)
|
|
||||||
|
|
||||||
x = self.block5a(x)
|
|
||||||
x = self.block5b(x)
|
|
||||||
|
|
||||||
x = self.mean(x, (2, 3))
|
|
||||||
x = self.flatten(x)
|
|
||||||
x = self.classifier(x)
|
|
||||||
|
|
||||||
_ = argmax
|
|
||||||
return x
|
|
@ -1,104 +0,0 @@
|
|||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# ============================================================================
|
|
||||||
"""VGG."""
|
|
||||||
import mindspore.nn as nn
|
|
||||||
from mindspore.common.initializer import initializer
|
|
||||||
import mindspore.common.dtype as mstype
|
|
||||||
|
|
||||||
def _make_layer(base, batch_norm):
|
|
||||||
"""Make stage network of VGG."""
|
|
||||||
layers = []
|
|
||||||
in_channels = 3
|
|
||||||
for v in base:
|
|
||||||
if v == 'M':
|
|
||||||
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
|
|
||||||
else:
|
|
||||||
weight_shape = (v, in_channels, 3, 3)
|
|
||||||
weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor()
|
|
||||||
conv2d = nn.Conv2d(in_channels=in_channels,
|
|
||||||
out_channels=v,
|
|
||||||
kernel_size=3,
|
|
||||||
padding=0,
|
|
||||||
pad_mode='same',
|
|
||||||
weight_init=weight)
|
|
||||||
if batch_norm:
|
|
||||||
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()]
|
|
||||||
else:
|
|
||||||
layers += [conv2d, nn.ReLU()]
|
|
||||||
in_channels = v
|
|
||||||
return nn.SequentialCell(layers)
|
|
||||||
|
|
||||||
|
|
||||||
class Vgg(nn.Cell):
|
|
||||||
"""
|
|
||||||
VGG network definition.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
base (list): Configuration for different layers, mainly the channel number of Conv layer.
|
|
||||||
num_classes (int): Class numbers. Default: 1000.
|
|
||||||
batch_norm (bool): Whether to do the batchnorm. Default: False.
|
|
||||||
batch_size (int): Batch size. Default: 1.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Tensor, infer output tensor.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
|
||||||
>>> num_classes=1000, batch_norm=False, batch_size=1)
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1):
|
|
||||||
super(Vgg, self).__init__()
|
|
||||||
_ = batch_size
|
|
||||||
self.layers = _make_layer(base, batch_norm=batch_norm)
|
|
||||||
self.flatten = nn.Flatten()
|
|
||||||
self.classifier = nn.SequentialCell([
|
|
||||||
nn.Dense(512 * 7 * 7, 4096),
|
|
||||||
nn.ReLU(),
|
|
||||||
nn.Dense(4096, 4096),
|
|
||||||
nn.ReLU(),
|
|
||||||
nn.Dense(4096, num_classes)])
|
|
||||||
|
|
||||||
def construct(self, x):
|
|
||||||
x = self.layers(x)
|
|
||||||
x = self.flatten(x)
|
|
||||||
x = self.classifier(x)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
cfg = {
|
|
||||||
'11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
|
||||||
'13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
|
||||||
'16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
|
||||||
'19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
def vgg16(num_classes=1000):
|
|
||||||
"""
|
|
||||||
Get Vgg16 neural network with batch normalization.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
num_classes (int): Class numbers. Default: 1000.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
Cell, cell instance of Vgg16 neural network with batch normalization.
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
>>> vgg16(num_classes=1000)
|
|
||||||
"""
|
|
||||||
|
|
||||||
net = Vgg(cfg['16'], num_classes=num_classes, batch_norm=True)
|
|
||||||
return net
|
|
Loading…
Reference in new issue