!12842 Add grad op for gpu dynamic shape testing op
From: @peilin-wang Reviewed-by: Signed-off-by:pull/12842/MERGE
commit
df98fa0233
@ -0,0 +1,56 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops.operations import _inner_ops as inner
|
||||
|
||||
def test_gpu_convert_to_dynamic_shape_grad():
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.op = inner.GpuConvertToDynamicShape()
|
||||
|
||||
def construct(self, x1):
|
||||
return self.op(x1)
|
||||
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradNet, self).__init__()
|
||||
self.grad = C.GradOperation(get_all=True, sens_param=True)
|
||||
self.network = network
|
||||
|
||||
def construct(self, x1, dy):
|
||||
return self.grad(self.network)(x1, dy)
|
||||
|
||||
net = Net()
|
||||
grad_net = GradNet(net)
|
||||
|
||||
x1 = Tensor(np.array([1.4, -1.2, 2.5, -3.23, -4.12, 5.53]).astype(np.float32))
|
||||
dy = Tensor(np.array([0.10, 0.11, 0.22, 0.33, 0.44, 0.155]).astype(np.float32))
|
||||
out = grad_net(x1, dy)
|
||||
np.testing.assert_allclose(out[0].asnumpy(), dy.asnumpy(), rtol=1e-6)
|
||||
|
||||
x1 = Tensor(np.array([[4.4, -6.2], [22.5, 13.23], [293, 2.22]]).astype(np.float32))
|
||||
dy = Tensor(np.array([[0.001, 0.21], [0.22, 0.663], [0.422, 0.2]]).astype(np.float32))
|
||||
out = grad_net(x1, dy)
|
||||
np.testing.assert_allclose(out[0].asnumpy(), dy.asnumpy(), rtol=1e-6)
|
Loading…
Reference in new issue