!12842 Add grad op for gpu dynamic shape testing op

From: @peilin-wang
Reviewed-by: 
Signed-off-by:
pull/12842/MERGE
mindspore-ci-bot 4 years ago committed by Gitee
commit df98fa0233

@ -1,4 +1,4 @@
# Copyright 2020 Huawei Technologies Co., Ltd
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -83,3 +83,10 @@ def get_bprop_sync_batch_norm(self):
dbias = out[2]
return dx, dscale, dbias, zeros_like(mean), zeros_like(variance)
return bprop
@bprop_getters.register(inner.GpuConvertToDynamicShape)
def get_bprop_gpu_convert_to_dynamic_shape(self):
def bprop(x, out, dout):
return (dout,)
return bprop

@ -0,0 +1,56 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import composite as C
from mindspore.ops.operations import _inner_ops as inner
def test_gpu_convert_to_dynamic_shape_grad():
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.op = inner.GpuConvertToDynamicShape()
def construct(self, x1):
return self.op(x1)
class GradNet(nn.Cell):
def __init__(self, network):
super(GradNet, self).__init__()
self.grad = C.GradOperation(get_all=True, sens_param=True)
self.network = network
def construct(self, x1, dy):
return self.grad(self.network)(x1, dy)
net = Net()
grad_net = GradNet(net)
x1 = Tensor(np.array([1.4, -1.2, 2.5, -3.23, -4.12, 5.53]).astype(np.float32))
dy = Tensor(np.array([0.10, 0.11, 0.22, 0.33, 0.44, 0.155]).astype(np.float32))
out = grad_net(x1, dy)
np.testing.assert_allclose(out[0].asnumpy(), dy.asnumpy(), rtol=1e-6)
x1 = Tensor(np.array([[4.4, -6.2], [22.5, 13.23], [293, 2.22]]).astype(np.float32))
dy = Tensor(np.array([[0.001, 0.21], [0.22, 0.663], [0.422, 0.2]]).astype(np.float32))
out = grad_net(x1, dy)
np.testing.assert_allclose(out[0].asnumpy(), dy.asnumpy(), rtol=1e-6)
Loading…
Cancel
Save