parent
2dc4dae41c
commit
e0528615e3
@ -0,0 +1,79 @@
|
||||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.squeeze = P.Squeeze()
|
||||
|
||||
def construct(self, tensor):
|
||||
return self.squeeze(tensor)
|
||||
|
||||
|
||||
def test_net_bool():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.bool)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_uint8():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.uint8)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_int16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_int32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.int32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_float16():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float16)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
||||
|
||||
|
||||
def test_net_float32():
|
||||
x = np.random.randn(1, 16, 1, 1).astype(np.float32)
|
||||
net = Net()
|
||||
output = net(Tensor(x))
|
||||
print(output.asnumpy())
|
||||
assert np.all(output.asnumpy() == x.squeeze())
|
Loading…
Reference in new issue