!11700 Add Asin, ACos, AsinGrad, ACosGrad for CPU
From: @wangrao124 Reviewed-by: @wuxuejian Signed-off-by:pull/11700/MERGE
commit
e0678ecf35
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetACosGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetACosGrad, self).__init__()
|
||||
self.acosGrad = G.ACosGrad()
|
||||
|
||||
def construct(self, x, dy):
|
||||
return self.acosGrad(x, dy)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_acos_grad():
|
||||
x = np.array([-0.5, 0, 0.5]).astype('float32')
|
||||
dy = np.array([1, 0, -1]).astype('float32')
|
||||
acos_grad = NetACosGrad()
|
||||
output = acos_grad(Tensor(x), Tensor(dy))
|
||||
print(output)
|
||||
expect = -dy / np.sqrt(1 - x * x)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetACos(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetACos, self).__init__()
|
||||
self.acos = P.ACos()
|
||||
|
||||
def construct(self, x):
|
||||
return self.acos(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_acos():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetACos()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.arccos(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops.operations import _grad_ops as G
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAsinGrad(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAsinGrad, self).__init__()
|
||||
self.asinGrad = G.AsinGrad()
|
||||
|
||||
def construct(self, x, dy):
|
||||
return self.asinGrad(x, dy)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_asin_grad():
|
||||
x = np.array([-0.5, 0, 0.5]).astype('float32')
|
||||
dy = np.array([1, 0, -1]).astype('float32')
|
||||
asin_grad = NetAsinGrad()
|
||||
output = asin_grad(Tensor(x), Tensor(dy))
|
||||
print(output)
|
||||
expect = dy / np.sqrt(1 - x * x)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
@ -0,0 +1,46 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
|
||||
class NetAsin(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetAsin, self).__init__()
|
||||
self.asin = P.Asin()
|
||||
|
||||
def construct(self, x):
|
||||
return self.asin(x)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_asin():
|
||||
np_array = np.array([-1, -0.5, 0, 0.5, 1]).astype('float32')
|
||||
input_x = Tensor(np_array)
|
||||
net = NetAsin()
|
||||
output = net(input_x)
|
||||
print(output)
|
||||
expect = np.arcsin(np_array)
|
||||
assert np.allclose(output.asnumpy(), expect)
|
Loading…
Reference in new issue