parent
bb125cb309
commit
e1d6c1acb7
@ -0,0 +1,61 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Manual construct network for LeNet"""
|
||||
|
||||
import mindspore.nn as nn
|
||||
|
||||
|
||||
class LeNet5(nn.Cell):
|
||||
"""
|
||||
Lenet network
|
||||
|
||||
Args:
|
||||
num_class (int): Num classes. Default: 10.
|
||||
|
||||
Returns:
|
||||
Tensor, output tensor
|
||||
Examples:
|
||||
>>> LeNet(num_class=10)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, num_class=10, channel=1):
|
||||
super(LeNet5, self).__init__()
|
||||
self.num_class = num_class
|
||||
|
||||
self.conv1 = nn.Conv2dBnFoldQuant(channel, 6, 5, pad_mode='valid', per_channel=True, quant_delay=900)
|
||||
self.conv2 = nn.Conv2dBnFoldQuant(6, 16, 5, pad_mode='valid', per_channel=True, quant_delay=900)
|
||||
self.fc1 = nn.DenseQuant(16 * 5 * 5, 120, per_channel=True, quant_delay=900)
|
||||
self.fc2 = nn.DenseQuant(120, 84, per_channel=True, quant_delay=900)
|
||||
self.fc3 = nn.DenseQuant(84, self.num_class, per_channel=True, quant_delay=900)
|
||||
|
||||
self.relu = nn.ActQuant(nn.ReLU(), per_channel=False, quant_delay=900)
|
||||
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||
self.flatten = nn.Flatten()
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.conv2(x)
|
||||
x = self.relu(x)
|
||||
x = self.max_pool2d(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc1(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc2(x)
|
||||
x = self.relu(x)
|
||||
x = self.fc3(x)
|
||||
return x
|
Loading…
Reference in new issue