!4285 fix doc error

Merge pull request !4285 from yanghaitao/yht_fix_doc
pull/4285/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit e48293a58d

@ -1301,17 +1301,6 @@ class Dataset:
return self.children[0].get_repeat_count() return self.children[0].get_repeat_count()
return 1 return 1
def get_class_indexing(self):
"""
Get the class index.
Return:
Dict, A str-to-int mapping from label name to index.
"""
if self.children:
return self.children[0].get_class_indexing()
raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self)))
def reset(self): def reset(self):
"""Reset the dataset for next epoch.""" """Reset the dataset for next epoch."""
@ -1448,7 +1437,7 @@ class MappableDataset(SourceDataset):
sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, , sn] is sizes (Union[list[int], list[float]]): If a list of integers [s1, s2, , sn] is
provided, the dataset will be split into n datasets of size s1, size s2, , size sn provided, the dataset will be split into n datasets of size s1, size s2, , size sn
respectively. If the sum of all sizes does not equal the original dataset size, an respectively. If the sum of all sizes does not equal the original dataset size, an
an error will occur. error will occur.
If a list of floats [f1, f2, , fn] is provided, all floats must be between 0 and 1 If a list of floats [f1, f2, , fn] is provided, all floats must be between 0 and 1
and must sum to 1, otherwise an error will occur. The dataset will be split into n and must sum to 1, otherwise an error will occur. The dataset will be split into n
Datasets of size round(f1*K), round(f2*K), , round(fn*K) where K is the size of the Datasets of size round(f1*K), round(f2*K), , round(fn*K) where K is the size of the
@ -1543,7 +1532,16 @@ class DatasetOp(Dataset):
""" """
# No need for __init__ since it is the same as the super's init # No need for __init__ since it is the same as the super's init
def get_class_indexing(self):
"""
Get the class index.
Return:
Dict, A str-to-int mapping from label name to index.
"""
if self.children:
return self.children[0].get_class_indexing()
raise NotImplementedError("Dataset {} has not supported api get_class_indexing yet.".format(type(self)))
class BucketBatchByLengthDataset(DatasetOp): class BucketBatchByLengthDataset(DatasetOp):
""" """
@ -2506,7 +2504,7 @@ class ImageFolderDatasetV2(MappableDataset):
The generated dataset has two columns ['image', 'label']. The generated dataset has two columns ['image', 'label'].
The shape of the image column is [image_size] if decode flag is False, or [H,W,C] The shape of the image column is [image_size] if decode flag is False, or [H,W,C]
otherwise. otherwise.
The type of the image tensor is uint8. The label is just a scalar uint64 The type of the image tensor is uint8. The label is just a scalar int32
tensor. tensor.
This dataset can take in a sampler. sampler and shuffle are mutually exclusive. Table This dataset can take in a sampler. sampler and shuffle are mutually exclusive. Table
below shows what input args are allowed and their expected behavior. below shows what input args are allowed and their expected behavior.
@ -2578,7 +2576,7 @@ class ImageFolderDatasetV2(MappableDataset):
>>> # 2) read all samples (image files) from folder cat and folder dog with label 0 and 1 >>> # 2) read all samples (image files) from folder cat and folder dog with label 0 and 1
>>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir,class_indexing={"cat":0,"dog":1}) >>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir,class_indexing={"cat":0,"dog":1})
>>> # 3) read all samples (image files) in dataset_dir with extensions .JPEG and .png (case sensitive) >>> # 3) read all samples (image files) in dataset_dir with extensions .JPEG and .png (case sensitive)
>>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir, extensions={".JPEG",".png"}) >>> imagefolder_dataset = ds.ImageFolderDatasetV2(dataset_dir, extensions=[".JPEG",".png"])
""" """
@check_imagefolderdatasetv2 @check_imagefolderdatasetv2

Loading…
Cancel
Save