|
|
|
@ -17,7 +17,6 @@ import numpy as np
|
|
|
|
|
import mindspore.context as context
|
|
|
|
|
import mindspore.nn as nn
|
|
|
|
|
from mindspore import Tensor
|
|
|
|
|
from mindspore.common.api import ms_function
|
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
@ -28,16 +27,15 @@ class Net(nn.Cell):
|
|
|
|
|
super(Net, self).__init__()
|
|
|
|
|
self.ctc_loss = P.CTCLoss()
|
|
|
|
|
|
|
|
|
|
@ms_function
|
|
|
|
|
def construct(self, inputs, labels_indices, labels_values, sequence_length):
|
|
|
|
|
return self.ctc_loss(inputs, labels_indices, labels_values, sequence_length)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_net_float32():
|
|
|
|
|
x = np.rand.randn(2, 2, 3).astype(np.float32)
|
|
|
|
|
labels_indices = np.array([[0, 0], [1, 0]]).astype(np.int64)
|
|
|
|
|
labels_values = np.array([2, 2]).astype(np.int32)
|
|
|
|
|
x = np.random.randn(2, 2, 3).astype(np.float32)
|
|
|
|
|
labels_indices = np.array([[0, 1], [1, 0]]).astype(np.int64)
|
|
|
|
|
labels_values = np.array([1, 2]).astype(np.int32)
|
|
|
|
|
sequence_length = np.array([2, 2]).astype(np.int32)
|
|
|
|
|
net = Net()
|
|
|
|
|
output = net(Tensor(x), Tensor(labels_indices), Tensor(labels_values), Tensor(sequence_length))
|
|
|
|
|
print(output.asnumpy())
|
|
|
|
|
print(output)
|
|
|
|
|