Merge pull request !6250 from yanzhenxiang2020/br_fix_aicpu_ut
pull/6250/MERGE
mindspore-ci-bot 5 years ago committed by Gitee
commit e49d8cb697

@ -26,6 +26,7 @@ reverse_sequence_op_info = AiCPURegOp("ReverseSequence") \
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I8_Default) \ .dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I8_Default) \
.dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I16_Default) \ .dtype_format(DataType.I16_Default, DataType.I32_Default, DataType.I16_Default) \
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \ .dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I32_Default) \
.dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \ .dtype_format(DataType.I64_Default, DataType.I32_Default, DataType.I64_Default) \
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.U8_Default) \ .dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.U8_Default) \
.dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.U16_Default) \ .dtype_format(DataType.U16_Default, DataType.I32_Default, DataType.U16_Default) \

@ -1892,7 +1892,7 @@ class RNNTLoss(PrimitiveWithInfer):
- **acts** (Tensor) - Tensor of shape :math:`(B, T, U, V)`. Data type should be float16 or float32. - **acts** (Tensor) - Tensor of shape :math:`(B, T, U, V)`. Data type should be float16 or float32.
- **labels** (Tensor[int32]) - Tensor of shape :math:`(B, U-1)`. - **labels** (Tensor[int32]) - Tensor of shape :math:`(B, U-1)`.
- **input_lengths** (Tensor[int32]) - Tensor of shape :math:`(B,)`. - **input_lengths** (Tensor[int32]) - Tensor of shape :math:`(B,)`.
- **label_lebgths** (Tensor[int32]) - Tensor of shape :math:`(B,)`. - **label_lengths** (Tensor[int32]) - Tensor of shape :math:`(B,)`.
Outputs: Outputs:
- **costs** (Tensor[int32]) - Tensor of shape :math:`(B,)`. - **costs** (Tensor[int32]) - Tensor of shape :math:`(B,)`.

@ -17,7 +17,6 @@ import numpy as np
import mindspore.context as context import mindspore.context as context
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Tensor from mindspore import Tensor
from mindspore.common.api import ms_function
from mindspore.ops import operations as P from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
@ -28,16 +27,15 @@ class Net(nn.Cell):
super(Net, self).__init__() super(Net, self).__init__()
self.ctc_loss = P.CTCLoss() self.ctc_loss = P.CTCLoss()
@ms_function
def construct(self, inputs, labels_indices, labels_values, sequence_length): def construct(self, inputs, labels_indices, labels_values, sequence_length):
return self.ctc_loss(inputs, labels_indices, labels_values, sequence_length) return self.ctc_loss(inputs, labels_indices, labels_values, sequence_length)
def test_net_float32(): def test_net_float32():
x = np.rand.randn(2, 2, 3).astype(np.float32) x = np.random.randn(2, 2, 3).astype(np.float32)
labels_indices = np.array([[0, 0], [1, 0]]).astype(np.int64) labels_indices = np.array([[0, 1], [1, 0]]).astype(np.int64)
labels_values = np.array([2, 2]).astype(np.int32) labels_values = np.array([1, 2]).astype(np.int32)
sequence_length = np.array([2, 2]).astype(np.int32) sequence_length = np.array([2, 2]).astype(np.int32)
net = Net() net = Net()
output = net(Tensor(x), Tensor(labels_indices), Tensor(labels_values), Tensor(sequence_length)) output = net(Tensor(x), Tensor(labels_indices), Tensor(labels_values), Tensor(sequence_length))
print(output.asnumpy()) print(output)

@ -40,7 +40,7 @@ def test_net_int8():
batch_dim = 1 batch_dim = 1
net = Net(seq_dim, batch_dim) net = Net(seq_dim, batch_dim)
output = net(Tensor(x), Tensor(seq_lengths)) output = net(Tensor(x), Tensor(seq_lengths))
expected = np.array([1, 5, 9], [4, 2, 6], [7, 8, 3]).astype(np.int8) expected = np.array([[1, 5, 9], [4, 2, 6], [7, 8, 3]]).astype(np.int8)
assert np.array_equal(output.asnumpy(), expected) assert np.array_equal(output.asnumpy(), expected)
@ -51,5 +51,5 @@ def test_net_int32():
batch_dim = 0 batch_dim = 0
net = Net(seq_dim, batch_dim) net = Net(seq_dim, batch_dim)
output = net(Tensor(x), Tensor(seq_lengths)) output = net(Tensor(x), Tensor(seq_lengths))
expected = np.array([1, 2, 3], [5, 4, 6], [9, 8, 7]).astype(np.int32) expected = np.array([[1, 2, 3], [5, 4, 6], [9, 8, 7]]).astype(np.int32)
assert np.array_equal(output.asnumpy(), expected) assert np.array_equal(output.asnumpy(), expected)

Loading…
Cancel
Save