!153 add api image_gradients
Merge pull request !153 from zhaozhenlong/cell/image_gradientspull/153/MERGE
commit
e6ea09082c
@ -0,0 +1,62 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import ms_function
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.image_gradients = nn.ImageGradients()
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
return self.image_gradients(x)
|
||||
|
||||
|
||||
def test_image_gradients():
|
||||
image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32)
|
||||
expected_dy = np.array([[[[2,2],[0,0]]]]).astype(np.int32)
|
||||
expected_dx = np.array([[[[1,0],[1,0]]]]).astype(np.int32)
|
||||
net = Net()
|
||||
dy, dx = net(image)
|
||||
assert np.any(dx.asnumpy()-expected_dx) == False
|
||||
assert np.any(dy.asnumpy()-expected_dy) == False
|
||||
|
||||
|
||||
def test_image_gradients_multi_channel_depth():
|
||||
# 4 x 2 x 2 x 2
|
||||
dtype = mstype.int32
|
||||
image = Tensor(np.array([[[[1,2],[3,4]], [[5,6],[7,8]]],
|
||||
[[[3,5],[7,9]], [[11,13],[15,17]]],
|
||||
[[[5,10],[15,20]], [[25,30],[35,40]]],
|
||||
[[[10,20],[30,40]], [[50,60],[70,80]]]]), dtype=dtype)
|
||||
expected_dy = Tensor(np.array([[[[2,2],[0,0]], [[2,2],[0,0]]],
|
||||
[[[4,4],[0,0]], [[4,4],[0,0]]],
|
||||
[[[10,10],[0,0]], [[10,10],[0,0]]],
|
||||
[[[20,20],[0,0]], [[20,20],[0,0]]]]), dtype=dtype)
|
||||
expected_dx = Tensor(np.array([[[[1,0],[1,0]], [[1,0],[1,0]]],
|
||||
[[[2,0],[2,0]], [[2,0],[2,0]]],
|
||||
[[[5,0],[5,0]], [[5,0],[5,0]]],
|
||||
[[[10,0],[10,0]], [[10,0],[10,0]]]]), dtype=dtype)
|
||||
net = Net()
|
||||
dy, dx = net(image)
|
||||
|
||||
assert np.any(dx.asnumpy()-expected_dx.asnumpy()) == False
|
||||
assert np.any(dy.asnumpy()-expected_dy.asnumpy()) == False
|
@ -0,0 +1,49 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
""" test loss """
|
||||
import numpy as np
|
||||
import mindspore.nn as nn
|
||||
import mindspore.context as context
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import Tensor
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.common.api import ms_function
|
||||
|
||||
context.set_context(device_target="Ascend")
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.image_gradients = nn.ImageGradients()
|
||||
|
||||
@ms_function
|
||||
def construct(self, x):
|
||||
return self.image_gradients(x)
|
||||
|
||||
def test_compile():
|
||||
# input shape 1 x 1 x 2 x 2
|
||||
image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32)
|
||||
net = Net()
|
||||
_executor.compile(net, image)
|
||||
|
||||
|
||||
def test_compile_multi_channel():
|
||||
# input shape 4 x 2 x 2 x 2
|
||||
dtype = mstype.int32
|
||||
image = Tensor(np.array([[[[1,2],[3,4]], [[5,6],[7,8]]],
|
||||
[[[3,5],[7,9]], [[11,13],[15,17]]],
|
||||
[[[5,10],[15,20]], [[25,30],[35,40]]],
|
||||
[[[10,20],[30,40]], [[50,60],[70,80]]]]), dtype=dtype)
|
||||
net = Net()
|
||||
_executor.compile(net, image)
|
Loading…
Reference in new issue