modify readme

pull/5504/head
wukesong 5 years ago
parent 44d7d85004
commit e7b8d5eeac

@ -71,8 +71,7 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
## [Script and Sample Code](#contents) ## [Script and Sample Code](#contents)
``` ```
├── model_zoo ├── cv
├── README.md // descriptions about all the models
├── alexnet ├── alexnet
├── README.md // descriptions about alexnet ├── README.md // descriptions about alexnet
├── requirements.txt // package needed ├── requirements.txt // package needed
@ -116,8 +115,8 @@ sh run_standalone_train_ascend.sh cifar-10-batches-bin ckpt
After training, the loss value will be achieved as follows: After training, the loss value will be achieved as follows:
# grep "loss is " train.log
``` ```
# grep "loss is " train.log
epoch: 1 step: 1, loss is 2.2791853 epoch: 1 step: 1, loss is 2.2791853
... ...
epoch: 1 step: 1536, loss is 1.9366643 epoch: 1 step: 1536, loss is 1.9366643
@ -171,7 +170,7 @@ You can view the results through the file "log.txt". The accuracy of the test da
# [Description of Random Situation](#contents) # [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function. In dataset.py, we set the seed inside ```create_dataset``` function.
# [ModelZoo Homepage](#contents) # [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

@ -77,8 +77,7 @@ sh run_standalone_eval_ascend.sh [DATA_PATH] [CKPT_NAME]
## [Script and Sample Code](#contents) ## [Script and Sample Code](#contents)
``` ```
├── model_zoo ├── cv
├── README.md // descriptions about all the models
├── lenet ├── lenet
├── README.md // descriptions about lenet ├── README.md // descriptions about lenet
├── requirements.txt // package needed ├── requirements.txt // package needed
@ -181,7 +180,7 @@ You can view the results through the file "log.txt". The accuracy of the test da
# [Description of Random Situation](#contents) # [Description of Random Situation](#contents)
In dataset.py, we set the seed inside “create_dataset" function. In dataset.py, we set the seed inside ```create_dataset``` function.
# [ModelZoo Homepage](#contents) # [ModelZoo Homepage](#contents)
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo). Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).

@ -175,7 +175,7 @@ result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.
| Parameters | | | | | Parameters | | | |
| -------------------------- | ----------------------------- | ------------------------- | -------------------- | | -------------------------- | ----------------------------- | ------------------------- | -------------------- |
| Model Version | V1 | | | | Model Version | V1 | | |
| Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 | | Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 |
| uploaded Date | 05/06/2020 | 05/22/2020 | | | uploaded Date | 05/06/2020 | 05/22/2020 | |
| MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 | | MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 |
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W | | Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |

@ -47,7 +47,8 @@ Dataset used: [imagenet](http://www.image-net.org/)
## [Mixed Precision](#contents) ## [Mixed Precision](#contents)
The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware. The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision. For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching reduce precision.
# [Environment Requirements](#contents) # [Environment Requirements](#contents)
@ -228,7 +229,7 @@ acc=93.88%(TOP5)
| Parameters | | | | | Parameters | | | |
| -------------------------- | ----------------------------- | ------------------------- | -------------------- | | -------------------------- | ----------------------------- | ------------------------- | -------------------- |
| Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 | | Resource | Ascend 910 | NV SMX2 V100-32G | Ascend 310 |
| uploaded Date | 06/30/2020 | 07/23/2020 | 07/23/2020 | | uploaded Date | 06/30/2020 | 07/23/2020 | 07/23/2020 |
| MindSpore Version | 0.5.0 | 0.6.0 | 0.6.0 | | MindSpore Version | 0.5.0 | 0.6.0 | 0.6.0 |
| Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W | | Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |

Loading…
Cancel
Save