parent
e4967ccf7d
commit
eccee9a3fb
@ -0,0 +1,64 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor, context
|
||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||
|
||||
|
||||
context.set_context(enable_sparse=True,
|
||||
mode=context.GRAPH_MODE)
|
||||
|
||||
|
||||
class NetWithEmbeddingLookUp(nn.Cell):
|
||||
def __init__(self, vocab_size, embedding_size, target="CPU"):
|
||||
super(NetWithEmbeddingLookUp, self).__init__()
|
||||
self.embedding_lookup = \
|
||||
nn.EmbeddingLookup(vocab_size=vocab_size,
|
||||
embedding_size=embedding_size,
|
||||
param_init="ones", target=target)
|
||||
|
||||
def construct(self, indices):
|
||||
out = self.embedding_lookup(indices)
|
||||
return out
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_arm_ascend_training
|
||||
@pytest.mark.platform_x86_ascend_training
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_sit_embedding_lookup_net():
|
||||
indices = Tensor(np.array([0, 1, 2]).astype(np.int32))
|
||||
label = Tensor(np.random.randn(3, 8).astype(np.float32))
|
||||
|
||||
net1 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU")
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(reduction="mean")
|
||||
optimizer1 = nn.Adam(params=net1.trainable_params(), learning_rate=0.1)
|
||||
optimizer1.unique = True
|
||||
train_network1 = TrainOneStepCell(WithLossCell(net1, loss), optimizer1)
|
||||
train_network1.set_train()
|
||||
out1 = train_network1(indices, label)
|
||||
|
||||
net2 = NetWithEmbeddingLookUp(vocab_size=8, embedding_size=8, target="CPU")
|
||||
optimizer2 = nn.Adam(params=net2.trainable_params(), learning_rate=0.1)
|
||||
optimizer2.unique = False
|
||||
optimizer2.target = "CPU"
|
||||
train_network2 = TrainOneStepCell(WithLossCell(net2, loss), optimizer2)
|
||||
train_network2.set_train()
|
||||
out2 = train_network2(indices, label)
|
||||
|
||||
assert np.allclose(out1.asnumpy(), out2.asnumpy(), 0.001, 0.001)
|
Loading…
Reference in new issue