|
|
@ -24,7 +24,8 @@ from mindspore.ops import operations as P
|
|
|
|
from mindspore.ops import functional as F
|
|
|
|
from mindspore.ops import functional as F
|
|
|
|
from mindspore.ops import composite as C
|
|
|
|
from mindspore.ops import composite as C
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
from mindspore.common.initializer import initializer
|
|
|
|
from .mobilenet import InvertedResidual, ConvBNReLU
|
|
|
|
from mindspore.ops.operations import TensorAdd
|
|
|
|
|
|
|
|
from mindspore import Parameter
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same'):
|
|
|
|
def _conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same'):
|
|
|
@ -45,6 +46,129 @@ def _make_divisible(v, divisor, min_value=None):
|
|
|
|
return new_v
|
|
|
|
return new_v
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DepthwiseConv(nn.Cell):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Depthwise Convolution warpper definition.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
in_planes (int): Input channel.
|
|
|
|
|
|
|
|
kernel_size (int): Input kernel size.
|
|
|
|
|
|
|
|
stride (int): Stride size.
|
|
|
|
|
|
|
|
pad_mode (str): pad mode in (pad, same, valid)
|
|
|
|
|
|
|
|
channel_multiplier (int): Output channel multiplier
|
|
|
|
|
|
|
|
has_bias (bool): has bias or not
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
Tensor, output tensor.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
>>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
|
|
|
|
|
|
|
|
super(DepthwiseConv, self).__init__()
|
|
|
|
|
|
|
|
self.has_bias = has_bias
|
|
|
|
|
|
|
|
self.in_channels = in_planes
|
|
|
|
|
|
|
|
self.channel_multiplier = channel_multiplier
|
|
|
|
|
|
|
|
self.out_channels = in_planes * channel_multiplier
|
|
|
|
|
|
|
|
self.kernel_size = (kernel_size, kernel_size)
|
|
|
|
|
|
|
|
self.depthwise_conv = P.DepthwiseConv2dNative(channel_multiplier=channel_multiplier,
|
|
|
|
|
|
|
|
kernel_size=self.kernel_size,
|
|
|
|
|
|
|
|
stride=stride, pad_mode=pad_mode, pad=pad)
|
|
|
|
|
|
|
|
self.bias_add = P.BiasAdd()
|
|
|
|
|
|
|
|
weight_shape = [channel_multiplier, in_planes, *self.kernel_size]
|
|
|
|
|
|
|
|
self.weight = Parameter(initializer('ones', weight_shape), name='weight')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if has_bias:
|
|
|
|
|
|
|
|
bias_shape = [channel_multiplier * in_planes]
|
|
|
|
|
|
|
|
self.bias = Parameter(initializer('zeros', bias_shape), name='bias')
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
self.bias = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
|
|
|
output = self.depthwise_conv(x, self.weight)
|
|
|
|
|
|
|
|
if self.has_bias:
|
|
|
|
|
|
|
|
output = self.bias_add(output, self.bias)
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ConvBNReLU(nn.Cell):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
in_planes (int): Input channel.
|
|
|
|
|
|
|
|
out_planes (int): Output channel.
|
|
|
|
|
|
|
|
kernel_size (int): Input kernel size.
|
|
|
|
|
|
|
|
stride (int): Stride size for the first convolutional layer. Default: 1.
|
|
|
|
|
|
|
|
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
Tensor, output tensor.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
|
|
|
|
|
|
|
|
super(ConvBNReLU, self).__init__()
|
|
|
|
|
|
|
|
padding = (kernel_size - 1) // 2
|
|
|
|
|
|
|
|
if groups == 1:
|
|
|
|
|
|
|
|
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
|
|
|
|
|
|
|
|
padding=padding)
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
|
|
|
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
|
|
|
|
|
|
|
|
layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
|
|
|
|
|
|
|
|
self.features = nn.SequentialCell(layers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
|
|
|
output = self.features(x)
|
|
|
|
|
|
|
|
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InvertedResidual(nn.Cell):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Mobilenetv2 residual block definition.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
inp (int): Input channel.
|
|
|
|
|
|
|
|
oup (int): Output channel.
|
|
|
|
|
|
|
|
stride (int): Stride size for the first convolutional layer. Default: 1.
|
|
|
|
|
|
|
|
expand_ratio (int): expand ration of input channel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
Tensor, output tensor.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
>>> ResidualBlock(3, 256, 1, 1)
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, inp, oup, stride, expand_ratio):
|
|
|
|
|
|
|
|
super(InvertedResidual, self).__init__()
|
|
|
|
|
|
|
|
assert stride in [1, 2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_dim = int(round(inp * expand_ratio))
|
|
|
|
|
|
|
|
self.use_res_connect = stride == 1 and inp == oup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
layers = []
|
|
|
|
|
|
|
|
if expand_ratio != 1:
|
|
|
|
|
|
|
|
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
|
|
|
|
|
|
|
|
layers.extend([
|
|
|
|
|
|
|
|
# dw
|
|
|
|
|
|
|
|
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
|
|
|
|
|
|
|
|
# pw-linear
|
|
|
|
|
|
|
|
nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
|
|
|
|
|
|
|
|
nn.BatchNorm2d(oup),
|
|
|
|
|
|
|
|
])
|
|
|
|
|
|
|
|
self.conv = nn.SequentialCell(layers)
|
|
|
|
|
|
|
|
self.add = TensorAdd()
|
|
|
|
|
|
|
|
self.cast = P.Cast()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
|
|
|
|
identity = x
|
|
|
|
|
|
|
|
x = self.conv(x)
|
|
|
|
|
|
|
|
if self.use_res_connect:
|
|
|
|
|
|
|
|
return self.add(identity, x)
|
|
|
|
|
|
|
|
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class FlattenConcat(nn.Cell):
|
|
|
|
class FlattenConcat(nn.Cell):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Concatenate predictions into a single tensor.
|
|
|
|
Concatenate predictions into a single tensor.
|
|
|
@ -57,20 +181,17 @@ class FlattenConcat(nn.Cell):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
|
|
def __init__(self, config):
|
|
|
|
super(FlattenConcat, self).__init__()
|
|
|
|
super(FlattenConcat, self).__init__()
|
|
|
|
self.sizes = config.FEATURE_SIZE
|
|
|
|
self.num_ssd_boxes = config.NUM_SSD_BOXES
|
|
|
|
self.length = len(self.sizes)
|
|
|
|
self.concat = P.Concat(axis=1)
|
|
|
|
self.num_default = config.NUM_DEFAULT
|
|
|
|
|
|
|
|
self.concat = P.Concat(axis=-1)
|
|
|
|
|
|
|
|
self.transpose = P.Transpose()
|
|
|
|
self.transpose = P.Transpose()
|
|
|
|
def construct(self, x):
|
|
|
|
def construct(self, inputs):
|
|
|
|
output = ()
|
|
|
|
output = ()
|
|
|
|
for i in range(self.length):
|
|
|
|
batch_size = F.shape(inputs[0])[0]
|
|
|
|
shape = F.shape(x[i])
|
|
|
|
for x in inputs:
|
|
|
|
mid_shape = (shape[0], -1, self.num_default[i], self.sizes[i], self.sizes[i])
|
|
|
|
x = self.transpose(x, (0, 2, 3, 1))
|
|
|
|
final_shape = (shape[0], -1, self.num_default[i] * self.sizes[i] * self.sizes[i])
|
|
|
|
output += (F.reshape(x, (batch_size, -1)),)
|
|
|
|
output += (F.reshape(F.reshape(x[i], mid_shape), final_shape),)
|
|
|
|
|
|
|
|
res = self.concat(output)
|
|
|
|
res = self.concat(output)
|
|
|
|
return self.transpose(res, (0, 2, 1))
|
|
|
|
return F.reshape(res, (batch_size, self.num_ssd_boxes, -1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MultiBox(nn.Cell):
|
|
|
|
class MultiBox(nn.Cell):
|
|
|
@ -145,7 +266,6 @@ class SSD300(nn.Cell):
|
|
|
|
if not is_training:
|
|
|
|
if not is_training:
|
|
|
|
self.softmax = P.Softmax()
|
|
|
|
self.softmax = P.Softmax()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
def construct(self, x):
|
|
|
|
layer_out_13, output = self.backbone(x)
|
|
|
|
layer_out_13, output = self.backbone(x)
|
|
|
|
multi_feature = (layer_out_13, output)
|
|
|
|
multi_feature = (layer_out_13, output)
|
|
|
|