|
|
|
@ -412,6 +412,46 @@ def test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file):
|
|
|
|
|
num_iter += 1
|
|
|
|
|
assert num_iter == 5
|
|
|
|
|
|
|
|
|
|
def test_cv_minddataset_random_sampler_replacement_false_1(add_and_remove_cv_file):
|
|
|
|
|
columns_list = ["data", "file_name", "label"]
|
|
|
|
|
num_readers = 4
|
|
|
|
|
sampler = ds.RandomSampler(replacement=False, num_samples=2)
|
|
|
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
|
|
|
sampler=sampler)
|
|
|
|
|
assert data_set.get_dataset_size() == 2
|
|
|
|
|
num_iter = 0
|
|
|
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
|
|
|
num_iter += 1
|
|
|
|
|
assert num_iter == 2
|
|
|
|
|
|
|
|
|
|
def test_cv_minddataset_random_sampler_replacement_false_2(add_and_remove_cv_file):
|
|
|
|
|
columns_list = ["data", "file_name", "label"]
|
|
|
|
|
num_readers = 4
|
|
|
|
|
sampler = ds.RandomSampler(replacement=False, num_samples=20)
|
|
|
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
|
|
|
sampler=sampler)
|
|
|
|
|
assert data_set.get_dataset_size() == 10
|
|
|
|
|
num_iter = 0
|
|
|
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
|
|
|
num_iter += 1
|
|
|
|
|
assert num_iter == 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file):
|
|
|
|
|
data = get_data(CV_DIR_NAME, True)
|
|
|
|
@ -437,7 +477,7 @@ def test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file):
|
|
|
|
|
assert num_iter == 4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
|
|
|
|
|
def test_cv_minddataset_sequential_sampler_offeset(add_and_remove_cv_file):
|
|
|
|
|
data = get_data(CV_DIR_NAME, True)
|
|
|
|
|
columns_list = ["data", "file_name", "label"]
|
|
|
|
|
num_readers = 4
|
|
|
|
@ -461,6 +501,30 @@ def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
|
|
|
|
|
num_iter += 1
|
|
|
|
|
assert num_iter == 10
|
|
|
|
|
|
|
|
|
|
def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
|
|
|
|
|
data = get_data(CV_DIR_NAME, True)
|
|
|
|
|
columns_list = ["data", "file_name", "label"]
|
|
|
|
|
num_readers = 4
|
|
|
|
|
sampler = ds.SequentialSampler(2, 20)
|
|
|
|
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
|
|
|
|
sampler=sampler)
|
|
|
|
|
dataset_size = data_set.get_dataset_size()
|
|
|
|
|
assert dataset_size == 10
|
|
|
|
|
num_iter = 0
|
|
|
|
|
for item in data_set.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
|
|
|
|
logger.info(
|
|
|
|
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
|
|
|
|
assert item['file_name'] == np.array(
|
|
|
|
|
data[(num_iter + 2) % dataset_size]['file_name'], dtype='S')
|
|
|
|
|
num_iter += 1
|
|
|
|
|
assert num_iter == 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_cv_minddataset_split_basic(add_and_remove_cv_file):
|
|
|
|
|
data = get_data(CV_DIR_NAME, True)
|
|
|
|
|