vm for PopulationCount

pull/2839/head
jiangjinsheng 5 years ago
parent 860a32632e
commit ee7aef98df

@ -284,3 +284,4 @@ from .scatter_div import _scatter_div_tbe
from .mod import _mod_tbe
from .max_pool_grad_grad import _max_pool_grad_grad_tbe
from .max_pool_grad_grad_with_argmax import _max_pool_grad_grad_with_argmax_tbe
from .population_count import _population_count_tbe

@ -0,0 +1,38 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""PopulationCount op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
population_count_op_info = TBERegOp("PopulationCount") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("population_count.so") \
.compute_cost(10) \
.kernel_name("population_count") \
.partial_flag(True) \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.I16_5HD, DataType.U8_5HD) \
.dtype_format(DataType.I16_Default, DataType.U8_Default) \
.dtype_format(DataType.U16_5HD, DataType.U8_5HD) \
.dtype_format(DataType.U16_Default, DataType.U8_Default) \
.get_op_info()
@op_info_register(population_count_op_info)
def _population_count_tbe():
"""PopulationCount TBE register"""
return

@ -76,7 +76,7 @@ from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, Appl
ApplyAdaMax, ApplyAdadelta, ApplyAdagrad, ApplyAdagradV2,
ApplyAddSign, ApplyPowerSign, ApplyGradientDescent, ApplyProximalGradientDescent,
ApplyRMSProp, ApplyCenteredRMSProp, BasicLSTMCell, InTopK)
from .other_ops import (Assign, IOU, BoundingBoxDecode, BoundingBoxEncode,
from .other_ops import (Assign, IOU, BoundingBoxDecode, BoundingBoxEncode, PopulationCount,
CheckValid, MakeRefKey, Partial, Depend, CheckBprop)
from .thor_ops import *
@ -328,7 +328,8 @@ __all__ = [
"InplaceUpdate",
"InTopK",
"LRN",
"Mod"
"Mod",
"PopulationCount"
]
__all__.sort()

@ -51,6 +51,7 @@ class Assign(PrimitiveWithInfer):
('variable', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('value', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T)
)
@prim_attr_register
def __init__(self):
self.init_prim_io_names(inputs=['ref', 'value'], outputs=['output'])
@ -324,6 +325,7 @@ class Partial(Primitive):
partial_func = functools.partial(func, *args[1:])
return partial_func
class Depend(Primitive):
"""
Depend is used for process side-effect operations.
@ -457,3 +459,32 @@ class ConfusionMatrix(PrimitiveWithInfer):
args = {"labels": labels, "predictions": predictions}
validator.check_tensor_type_same(args, (mstype.number_type), self.name)
return labels
class PopulationCount(PrimitiveWithInfer):
r"""
Calculate population count.
Inputs:
- **input** (Tensor) - The data type should be int16 or uint16.
Outputs:
Tensor, with shape same as the input.
Examples:
>>> population_count = P.PopulationCount()
>>> x_input = Tensor([0, 1, 3], mindspore.int16)
>>> population_count(x_input)
"""
@prim_attr_register
def __init__(self):
pass
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
args = {"x": x_dtype}
validator.check_tensor_type_same(args, (mstype.int16, mstype.uint16,), self.name)
return mstype.tensor_type(mstype.uint8)

@ -2133,7 +2133,10 @@ test_case_other_ops = [
'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
Tensor(np.array([1.2]).astype(np.float32))],
'skip': ['backward']}),
('PopulationCount', {
'block': P.PopulationCount(),
'desc_inputs': [Tensor(np.array([1, 2, 3]).astype(np.int16))],
'skip': ['backward']}),
]
test_case_quant_ops = [

Loading…
Cancel
Save