!14183 Support SparseTensorDenseMatmul for CPU
From: @xuguoyang5566 Reviewed-by: Signed-off-by:pull/14183/MERGE
commit
efb53fb9c0
@ -0,0 +1,75 @@
|
||||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "backend/kernel_compiler/cpu/sparse_tensor_dense_matmul_cpu_kernel.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename I, typename T>
|
||||
void SparseTensorDenseMatmulCPUKernel<I, T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
output_size_ = 1;
|
||||
auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0);
|
||||
for (auto &dim : output_shape) {
|
||||
output_size_ *= dim;
|
||||
}
|
||||
|
||||
aValues_size_ = 1;
|
||||
auto aValues_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
|
||||
for (auto &dim : aValues_shape) {
|
||||
aValues_size_ *= dim;
|
||||
}
|
||||
|
||||
b_shape_ = AnfAlgo::GetInputDeviceShape(kernel_node, 3);
|
||||
output_shape_ = AnfAlgo::GetOutputDeviceShape(kernel_node, 0);
|
||||
}
|
||||
|
||||
template <typename I, typename T>
|
||||
bool SparseTensorDenseMatmulCPUKernel<I, T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
auto a_indices = reinterpret_cast<I *>(inputs[0]->addr);
|
||||
auto a_values = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto b = reinterpret_cast<T *>(inputs[3]->addr);
|
||||
auto out = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
memset(out, 0, output_size_);
|
||||
|
||||
const size_t nnz = aValues_size_;
|
||||
const size_t rhs_right = b_shape_[1];
|
||||
const size_t lhs_right = b_shape_[0];
|
||||
|
||||
for (size_t i = 0; i < nnz; ++i) {
|
||||
const size_t m = a_indices[i * 2];
|
||||
const size_t k = a_indices[i * 2 + 1];
|
||||
|
||||
if (k > lhs_right) {
|
||||
MS_LOG(ERROR) << "Invalid value: k: " << k << ", lhs_right: " << lhs_right;
|
||||
return false;
|
||||
}
|
||||
if (m > output_shape_[0]) {
|
||||
MS_LOG(ERROR) << "Invalid value: m: " << m << ", output_shape: " << output_shape_[0];
|
||||
return false;
|
||||
}
|
||||
|
||||
for (size_t n = 0; n < rhs_right; ++n) {
|
||||
const float b_value = b[k * lhs_right + n];
|
||||
out[m * output_shape_[0] + n] += a_values[i] * b_value;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
@ -0,0 +1,243 @@
|
||||
/**
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_TENSOR_DENSE_MATMUL_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_SPARSE_TENSOR_DENSE_MATMUL_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename I, typename T>
|
||||
class SparseTensorDenseMatmulCPUKernel : public CPUKernel {
|
||||
public:
|
||||
SparseTensorDenseMatmulCPUKernel() = default;
|
||||
~SparseTensorDenseMatmulCPUKernel() override = default;
|
||||
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
std::vector<size_t> output_shape_;
|
||||
std::vector<size_t> b_shape_;
|
||||
size_t output_size_;
|
||||
size_t aValues_size_;
|
||||
};
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, bool);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddOutputAttr(kNumberTypeUInt8),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, uint8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddOutputAttr(kNumberTypeUInt16),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, uint16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt32),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, uint32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt64)
|
||||
.AddOutputAttr(kNumberTypeUInt64),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, uint64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddOutputAttr(kNumberTypeInt8),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, int8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddOutputAttr(kNumberTypeInt16),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, int16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, float);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
SparseTensorDenseMatmulCPUKernel, int32_t, double);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddOutputAttr(kNumberTypeBool),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, bool);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt8)
|
||||
.AddOutputAttr(kNumberTypeUInt8),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, uint8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt16)
|
||||
.AddOutputAttr(kNumberTypeUInt16),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, uint16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt32)
|
||||
.AddOutputAttr(kNumberTypeUInt32),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, uint32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeUInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeUInt64)
|
||||
.AddOutputAttr(kNumberTypeUInt64),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, uint64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt8)
|
||||
.AddOutputAttr(kNumberTypeInt8),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, int8_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddOutputAttr(kNumberTypeInt16),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, int16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, int32_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat32)
|
||||
.AddOutputAttr(kNumberTypeFloat32),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, float);
|
||||
|
||||
MS_REG_CPU_KERNEL_T_S(SparseTensorDenseMatmul,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
SparseTensorDenseMatmulCPUKernel, int64_t, double);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RMSPROP_CPU_KERNEL_H_
|
@ -0,0 +1,53 @@
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import SparseTensor
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||
|
||||
class NetSparseDenseMatmul(nn.Cell):
|
||||
def __init__(self):
|
||||
super(NetSparseDenseMatmul, self).__init__()
|
||||
self.matmul = nn.SparseTensorDenseMatmul()
|
||||
|
||||
def construct(self, indices, values, dens_shape, dt):
|
||||
return self.matmul(indices, values, dens_shape, dt)
|
||||
|
||||
class NetSparseTensor(nn.Cell):
|
||||
def __init__(self, dense_shape):
|
||||
super(NetSparseTensor, self).__init__()
|
||||
self.dense_shape = dense_shape
|
||||
def construct(self, indices, values):
|
||||
x = SparseTensor(indices, values, self.dense_shape)
|
||||
return x.values, x.indices, x.dense_shape
|
||||
|
||||
def test_sparse_tensor_dense_matmul():
|
||||
indices = Tensor([[0, 1], [1, 1]])
|
||||
values = Tensor([5, 5], dtype=ms.float32)
|
||||
dens_shape = (3, 3)
|
||||
spMatrix = np.array([[5, 0, 0], [0, 5, 0], [0, 0, 5]], dtype=np.float32)
|
||||
dsMatrix = np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]], dtype=np.float32)
|
||||
test_SparseDenseMatmul = NetSparseDenseMatmul()
|
||||
|
||||
out_ms = test_SparseDenseMatmul(indices, values, dens_shape, Tensor(dsMatrix))
|
||||
out_np = np.matmul(spMatrix, dsMatrix)
|
||||
error = np.ones(shape=dsMatrix.shape) * 10e-6
|
||||
diff = out_ms.asnumpy() - out_np
|
||||
assert np.all(diff < error)
|
Loading…
Reference in new issue