Change Ones/zeros

pull/8842/head
l00591931 4 years ago
parent f052ce8ba2
commit f1e92d0ea7

@ -180,6 +180,8 @@ __all__ = [
'Invert',
'TruncatedNormal',
'Fill',
'Ones',
'Zeros',
'OnesLike',
'ZerosLike',
'Select',

@ -1121,22 +1121,24 @@ class Fill(PrimitiveWithInfer):
class Ones(PrimitiveWithInfer):
"""
r"""
Creates a tensor filled with value ones.
Creates a tensor with shape described by the first argument and
fills it with value ones in type of the second argument.
Inputs:
- **shape** (tuple) - The specified shape of output tensor. Only constant value is allowed.
- **shape** (Union[tuple[int], int]) - The specified shape of output tensor.
Only constant positive int is allowed.
- **type** (mindspore.dtype) - The specified type of output tensor. Only constant value is allowed.
Outputs:
Tensor, has the same type and shape as input value.
Tensor, has the same type and shape as input shape value.
Examples:
>>> from mindspore.ops import operations as P
>>> ones = P.Ones()
>>> output = Ones((2, 2), mindspore.float32)
>>> output = ones((2, 2), mindspore.float32)
>>> print(output)
[[1.0, 1.0],
[1.0, 1.0]]
@ -1147,40 +1149,46 @@ class Ones(PrimitiveWithInfer):
"""Initialize Fill"""
def __infer__(self, dims, dtype):
validator.check_value_type("shape", dims['value'], [tuple], self.name)
for i, item in enumerate(dims['value']):
validator.check_positive_int(item, f'dims[{i}]', self.name)
if isinstance(dims['value'], int):
shape = (dims['value'],)
else:
shape = dims['value']
validator.check_value_type("shape", shape, [tuple], self.name)
for i, item in enumerate(shape):
validator.check_non_negative_int(item, shape[i], self.name)
valid_types = [mstype.bool_, mstype.int8, mstype.int16, mstype.int32, mstype.int64,
mstype.uint8, mstype.uint32, mstype.uint64,
mstype.float16, mstype.float32, mstype.float64]
validator.check_types_same_and_valid({"value": dtype['value']}, valid_types, self.name)
x_nptype = mstype.dtype_to_nptype(dtype['value'])
ret = np.ones(dims['value'], x_nptype)
ret = np.ones(shape, x_nptype)
out = {
'value': Tensor(ret),
'shape': dims['value'],
'shape': shape,
'dtype': x_nptype,
}
return out
class Zeros(PrimitiveWithInfer):
"""
r"""
Creates a tensor filled with value zeros.
Creates a tensor with shape described by the first argument and
fills it with value zeros in type of the second argument.
Inputs:
- **shape** (tuple) - The specified shape of output tensor. Only constant value is allowed.
- **shape** (Union[tuple[int], int]) - The specified shape of output tensor.
Only constant positive int is allowed.
- **type** (mindspore.dtype) - The specified type of output tensor. Only constant value is allowed.
Outputs:
Tensor, has the same type and shape as input value.
Tensor, has the same type and shape as input shape value.
Examples:
>>> from mindspore.ops import operations as P
>>> zeros = P.Zeros()
>>> output = Zeros((2, 2), mindspore.float32)
>>> output = zeros((2, 2), mindspore.float32)
>>> print(output)
[[0.0, 0.0],
[0.0, 0.0]]
@ -1192,18 +1200,22 @@ class Zeros(PrimitiveWithInfer):
"""Initialize Fill"""
def __infer__(self, dims, dtype):
validator.check_value_type("shape", dims['value'], [tuple], self.name)
for i, item in enumerate(dims['value']):
validator.check_positive_int(item, f'dims[{i}]', self.name)
if isinstance(dims['value'], int):
shape = (dims['value'],)
else:
shape = dims['value']
validator.check_value_type("shape", shape, [tuple], self.name)
for i, item in enumerate(shape):
validator.check_non_negative_int(item, shape[i], self.name)
valid_types = [mstype.bool_, mstype.int8, mstype.int16, mstype.int32, mstype.int64,
mstype.uint8, mstype.uint32, mstype.uint64,
mstype.float16, mstype.float32, mstype.float64]
validator.check_types_same_and_valid({"value": dtype['value']}, valid_types, self.name)
x_nptype = mstype.dtype_to_nptype(dtype['value'])
ret = np.zeros(dims['value'], x_nptype)
ret = np.zeros(shape, x_nptype)
out = {
'value': Tensor(ret),
'shape': dims['value'],
'shape': shape,
'dtype': x_nptype,
}
return out

@ -59,6 +59,13 @@ def test_ones():
assert np.sum(output.asnumpy()) == 6
def test_ones_1():
ones = P.Ones()
output = ones(2, mstype.int32)
assert output.asnumpy().shape == (2,)
assert np.sum(output.asnumpy()) == 2
def test_zeros():
zeros = P.Zeros()
output = zeros((2, 3), mstype.int32)
@ -66,6 +73,13 @@ def test_zeros():
assert np.sum(output.asnumpy()) == 0
def test_zeros_1():
zeros = P.Zeros()
output = zeros(2, mstype.int32)
assert output.asnumpy().shape == (2,)
assert np.sum(output.asnumpy()) == 0
@non_graph_engine
def test_reshape():
input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]))

Loading…
Cancel
Save