|
|
@ -126,9 +126,6 @@ Parameters for both training and evaluation can be set in config.py
|
|
|
|
- config for RetinaFace, WIDERFACE dataset
|
|
|
|
- config for RetinaFace, WIDERFACE dataset
|
|
|
|
|
|
|
|
|
|
|
|
```python
|
|
|
|
```python
|
|
|
|
'name': 'Resnet50', # Backbone name
|
|
|
|
|
|
|
|
'min_sizes': [[16, 32], [64, 128], [256, 512]], # Size distribution
|
|
|
|
|
|
|
|
'steps': [8, 16, 32], # Each feature map steps
|
|
|
|
|
|
|
|
'variance': [0.1, 0.2], # Variance
|
|
|
|
'variance': [0.1, 0.2], # Variance
|
|
|
|
'clip': False, # Clip
|
|
|
|
'clip': False, # Clip
|
|
|
|
'loc_weight': 2.0, # Bbox regression loss weight
|
|
|
|
'loc_weight': 2.0, # Bbox regression loss weight
|
|
|
@ -142,14 +139,10 @@ Parameters for both training and evaluation can be set in config.py
|
|
|
|
'decay1': 70, # Epoch number of the first weight attenuation
|
|
|
|
'decay1': 70, # Epoch number of the first weight attenuation
|
|
|
|
'decay2': 90, # Epoch number of the second weight attenuation
|
|
|
|
'decay2': 90, # Epoch number of the second weight attenuation
|
|
|
|
'image_size': 840, # Training image size
|
|
|
|
'image_size': 840, # Training image size
|
|
|
|
'return_layers': {'layer2': 1, 'layer3': 2, 'layer4': 3}, # Layer name of input feature pyramid
|
|
|
|
|
|
|
|
'in_channel': 256, # Input channel of DetectionHead
|
|
|
|
|
|
|
|
'out_channel': 256, # Output channel of DetectionHead
|
|
|
|
|
|
|
|
'match_thresh': 0.35, # Threshold for match box
|
|
|
|
'match_thresh': 0.35, # Threshold for match box
|
|
|
|
'optim': 'sgd', # Optimizer type
|
|
|
|
'optim': 'sgd', # Optimizer type
|
|
|
|
'warmup_epoch': 5, # Warmup size, 0 means no warm-up
|
|
|
|
'warmup_epoch': 5, # Warmup size, 0 means no warm-up
|
|
|
|
'initial_lr': 0.01, # Learning rate
|
|
|
|
'initial_lr': 0.01, # Learning rate
|
|
|
|
'network': 'resnet50', # Backbone name
|
|
|
|
|
|
|
|
'momentum': 0.9, # Momentum for Optimizer
|
|
|
|
'momentum': 0.9, # Momentum for Optimizer
|
|
|
|
'weight_decay': 5e-4, # Weight decay for Optimizer
|
|
|
|
'weight_decay': 5e-4, # Weight decay for Optimizer
|
|
|
|
'gamma': 0.1, # Attenuation ratio of learning rate
|
|
|
|
'gamma': 0.1, # Attenuation ratio of learning rate
|
|
|
@ -158,10 +151,10 @@ Parameters for both training and evaluation can be set in config.py
|
|
|
|
'keep_checkpoint_max': 1, # Number of reserved checkpoints
|
|
|
|
'keep_checkpoint_max': 1, # Number of reserved checkpoints
|
|
|
|
'resume_net': None, # Network for restart, default is None
|
|
|
|
'resume_net': None, # Network for restart, default is None
|
|
|
|
'training_dataset': '', # Training dataset label path, like 'data/widerface/train/label.txt'
|
|
|
|
'training_dataset': '', # Training dataset label path, like 'data/widerface/train/label.txt'
|
|
|
|
'pretrain': True, # whether training based on the pre-trained backbone
|
|
|
|
'pretrain': True, # Whether training based on the pre-trained backbone
|
|
|
|
'pretrain_path': './data/res50_pretrain.ckpt', # Pre-trained backbone checkpoint path
|
|
|
|
'pretrain_path': './data/res50_pretrain.ckpt', # Pre-trained backbone checkpoint path
|
|
|
|
'seed': 1, # setup train seed
|
|
|
|
'seed': 1, # Setup train seed
|
|
|
|
'lr_type': 'dynamic_lr',
|
|
|
|
'lr_type': 'dynamic_lr', # Learning rate decline function type, set dynamic_lr or standard_lr
|
|
|
|
# val
|
|
|
|
# val
|
|
|
|
'val_model': './checkpoint/ckpt_0/RetinaFace-100_536.ckpt', # Validation model path
|
|
|
|
'val_model': './checkpoint/ckpt_0/RetinaFace-100_536.ckpt', # Validation model path
|
|
|
|
'val_dataset_folder': './data/widerface/val/', # Validation dataset path
|
|
|
|
'val_dataset_folder': './data/widerface/val/', # Validation dataset path
|
|
|
|