|
|
|
@ -19,7 +19,7 @@ Bert evaluation script.
|
|
|
|
|
|
|
|
|
|
import os
|
|
|
|
|
from src import BertModel, GetMaskedLMOutput
|
|
|
|
|
from evaluation_config import cfg, bert_net_cfg
|
|
|
|
|
from src.evaluation_config import cfg, bert_net_cfg
|
|
|
|
|
import mindspore.common.dtype as mstype
|
|
|
|
|
from mindspore import context
|
|
|
|
|
from mindspore.common.tensor import Tensor
|
|
|
|
@ -87,17 +87,18 @@ class BertPretrainEva(nn.Cell):
|
|
|
|
|
self.cast = P.Cast()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, nsp_label, masked_weights):
|
|
|
|
|
def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, masked_weights, nsp_label):
|
|
|
|
|
bs, _ = self.shape(input_ids)
|
|
|
|
|
probs = self.bert(input_ids, input_mask, token_type_id, masked_pos)
|
|
|
|
|
index = self.argmax(probs)
|
|
|
|
|
index = self.reshape(index, (bs, -1))
|
|
|
|
|
eval_acc = self.equal(index, masked_ids)
|
|
|
|
|
eval_acc1 = self.cast(eval_acc, mstype.float32)
|
|
|
|
|
acc = self.mean(eval_acc1)
|
|
|
|
|
P.Print()(acc)
|
|
|
|
|
self.total += self.shape(probs)[0]
|
|
|
|
|
self.acc += self.sum(eval_acc1)
|
|
|
|
|
real_acc = eval_acc1 * masked_weights
|
|
|
|
|
acc = self.sum(real_acc)
|
|
|
|
|
total = self.sum(masked_weights)
|
|
|
|
|
self.total += total
|
|
|
|
|
self.acc += acc
|
|
|
|
|
return acc, self.total, self.acc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -107,8 +108,8 @@ def get_enwiki_512_dataset(batch_size=1, repeat_count=1, distribute_file=''):
|
|
|
|
|
'''
|
|
|
|
|
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids",
|
|
|
|
|
"masked_lm_positions", "masked_lm_ids",
|
|
|
|
|
"next_sentence_labels",
|
|
|
|
|
"masked_lm_weights"])
|
|
|
|
|
"masked_lm_weights",
|
|
|
|
|
"next_sentence_labels"])
|
|
|
|
|
type_cast_op = C.TypeCast(mstype.int32)
|
|
|
|
|
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
|
|
|
|
|
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
|
|
|
|
@ -143,7 +144,8 @@ def MLM_eval():
|
|
|
|
|
Evaluate function
|
|
|
|
|
'''
|
|
|
|
|
_, dataset, net_for_pretraining = bert_predict()
|
|
|
|
|
net = Model(net_for_pretraining, eval_network=net_for_pretraining, eval_indexes=[0, 1, 2], metrics={myMetric()})
|
|
|
|
|
net = Model(net_for_pretraining, eval_network=net_for_pretraining, eval_indexes=[0, 1, 2],
|
|
|
|
|
metrics={'name': myMetric()})
|
|
|
|
|
res = net.eval(dataset, dataset_sink_mode=False)
|
|
|
|
|
print("==============================================================")
|
|
|
|
|
for _, v in res.items():
|
|
|
|
|