@ -4,14 +4,14 @@
- [Dataset ](#dataset )
- [Environment Requirements ](#environment-requirements )
- [Script Description ](#script-description )
- [Script and Sample Code ](#script-and-sample-code )
- [Training Process ](#training-process )
- [Evaluation Process ](#evaluation-process )
- [Evaluation ](#evaluation )
- [Script and Sample Code ](#script-and-sample-code )
- [Training Process ](#training-process )
- [Evaluation Process ](#evaluation-process )
- [Evaluation ](#evaluation )
- [Model Description ](#model-description )
- [Performance ](#performance )
- [Training Performance ](#evaluation-performance )
- [Inference Performance ](#evaluation-performance )
- [Performance ](#performance )
- [Training Performance ](#evaluation-performance )
- [Inference Performance ](#evaluation-performance )
- [Description of Random Situation ](#description-of-random-situation )
- [ModelZoo Homepage ](#modelzoo-homepage )
@ -26,20 +26,20 @@ The Adversarial Pruning method is a reliable neural network pruning algorithm by
Dataset used: [Oxford-IIIT Pet ](https://www.robots.ox.ac.uk/~vgg/data/pets/ )
- Dataset size: 7049 colorful images in 1000 classes
- Train: 3680 images
- Test: 3369 images
- Train: 3680 images
- Test: 3369 images
- Data format: RGB images.
- Note: Data will be processed in src/dataset.py
- Note: Data will be processed in src/dataset.py
# [Environment Requirements ](#contents )
- Hardware( Ascend/GPU)
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form ](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx ) to ascend@huawei.com. Once approved, you can get the resources.
- Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend, please send the [application form ](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx ) to ascend@huawei.com. Once approved, you can get the resources.
- Framework
- [MindSpore ](https://www.mindspore.cn/install/en )
- [MindSpore ](https://www.mindspore.cn/install/en )
- For more information, please check the resources below:
- [MindSpore Tutorials ](https://www.mindspore.cn/tutorial/training/en/master/index.html )
- [MindSpore Python API ](https://www.mindspore.cn/doc/api_python/en/master/index.html )
- [MindSpore Tutorials ](https://www.mindspore.cn/tutorial/training/en/master/index.html )
- [MindSpore Python API ](https://www.mindspore.cn/doc/api_python/en/master/index.html )
# [Script description ](#contents )
@ -58,6 +58,7 @@ Dataset used: [Oxford-IIIT Pet](https://www.robots.ox.ac.uk/~vgg/data/pets/)
```
## [Training process ](#contents )
To Be Done
## [Eval process ](#contents )
@ -66,11 +67,10 @@ To Be Done
After installing MindSpore via the official website, you can start evaluation as follows:
### Launch
```
# infer example
```bash
# infer example
Ascend: python eval.py --dataset_path ~/Pets/test.mindrecord --platform Ascend --checkpoint_path [CHECKPOINT_PATH]
GPU: python eval.py --dataset_path ~/Pets/test.mindrecord --platform GPU --checkpoint_path [CHECKPOINT_PATH]
@ -80,18 +80,18 @@ After installing MindSpore via the official website, you can start evaluation as
### Result
```
```python
result: {'acc': 0.8023984736985554} ckpt= ./resnet50-imgnet-0.65x-80.24.ckpt
```
# [Model Description ](#contents )
## [Performance ](#contents )
#### Evaluation Performance
### Evaluation Performance
#### ResNet50-0.65x on ImageNet2012
###### ResNet50-0.65x on ImageNet2012
| Parameters | |
| -------------------------- | -------------------------------------- |
| Model Version | ResNet50-0.65x |
@ -102,7 +102,8 @@ result: {'acc': 0.8023984736985554} ckpt= ./resnet50-imgnet-0.65x-80.24.ckpt
| FLOPs (G) | 2.1 |
| Accuracy (Top1) | 75.80 |
###### ResNet50-0.65x on Oxford-IIIT Pet
#### ResNet50-0.65x on Oxford-IIIT Pet
| Parameters | |
| -------------------------- | -------------------------------------- |
| Model Version | ResNet50-0.65x |