!7236 Add new pass:arithmetic_simplify and eliminate_empty_graph
Merge pull request !7236 from gengfei/1012_simplify_1.0pull/7236/MERGE
commit
f4421b4504
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,34 @@
|
||||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_ARITHMETIC_SIMPLIFY_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_ARITHMETIC_SIMPLIFY_H_
|
||||
|
||||
#include <memory>
|
||||
#include "backend/optimizer/common/optimizer.h"
|
||||
#include "ir/func_graph.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace opt {
|
||||
class ArithmeticSimplify : public Pass {
|
||||
public:
|
||||
ArithmeticSimplify() : Pass("arithmetic_simplify") {}
|
||||
~ArithmeticSimplify() override = default;
|
||||
bool Run(const FuncGraphPtr &func_graph) override;
|
||||
};
|
||||
using ArithmeticSimplifyPtr = std::shared_ptr<ArithmeticSimplify>;
|
||||
} // namespace opt
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_GRAPH_KERNEL_ARITHMETIC_SIMPLIFY_H_
|
@ -0,0 +1,67 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import mindspore.context as context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn import Cell
|
||||
import mindspore.ops.operations as P
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, enable_graph_kernel=True, device_target="GPU")
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self):
|
||||
super(Net, self).__init__()
|
||||
self.add = P.TensorAdd()
|
||||
self.sub = P.Sub()
|
||||
self.mul = P.Mul()
|
||||
self.div = P.RealDiv()
|
||||
self.sqrt = P.Sqrt()
|
||||
self.pow = P.Pow()
|
||||
self.neg = P.Neg()
|
||||
|
||||
def construct(self, x, y):
|
||||
add_res1 = self.add(x, 4)
|
||||
add_res2 = self.add(add_res1, 5)
|
||||
sub_res = self.sub(y, 3)
|
||||
mul_res = self.mul(self.sqrt(add_res2), self.sqrt(sub_res))
|
||||
div_res = self.div(mul_res, self.sqrt(mul_res))
|
||||
pow_res = self.pow(y, 2)
|
||||
neg_res = self.neg(self.neg(pow_res))
|
||||
return self.add(div_res, neg_res)
|
||||
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_gpu_training
|
||||
@pytest.mark.env_onecard
|
||||
def test_basic():
|
||||
input_x = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
|
||||
input_y = np.random.normal(0, 1, [2, 3, 4, 3]).astype(np.float32)
|
||||
input_y = np.abs(input_y) + 3
|
||||
add_res = input_x + 9
|
||||
sub_res = input_y + (-3)
|
||||
mul_res = np.sqrt(add_res * sub_res)
|
||||
div_res = np.sqrt(mul_res)
|
||||
pow_res = input_y * input_y
|
||||
neg_res = pow_res
|
||||
expect = div_res + neg_res
|
||||
|
||||
net = Net()
|
||||
result = net(Tensor(input_x), Tensor(input_y))
|
||||
|
||||
res = np.allclose(expect, result.asnumpy(), rtol=1.e-4, atol=1.e-7, equal_nan=True)
|
||||
assert res
|
Loading…
Reference in new issue