!14330 Amend manual quant export and add resnet50_quant export.py
From: @zhang__sss Reviewed-by: @zhoufeng54 Signed-off-by:pull/14330/MERGE
commit
f47767b361
@ -0,0 +1,53 @@
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Export Resnet50 on ImageNet"""
|
||||
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
import mindspore
|
||||
from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
|
||||
from mindspore.compression.quant import QuantizationAwareTraining
|
||||
|
||||
from models.resnet_quant_manual import resnet50_quant
|
||||
from src.config import config_quant
|
||||
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||
parser.add_argument('--file_format', type=str, choices=["AIR", "MINDIR"], default="MINDIR", help="file format")
|
||||
parser.add_argument('--device_target', type=str, default=None, help='Run device target')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
if __name__ == '__main__':
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
|
||||
# define fusion network
|
||||
network = resnet50_quant(class_num=config_quant.class_num)
|
||||
# convert fusion network to quantization aware network
|
||||
quantizer = QuantizationAwareTraining(bn_fold=True,
|
||||
per_channel=[True, False],
|
||||
symmetric=[True, False])
|
||||
network = quantizer.quantize(network)
|
||||
# load checkpoint
|
||||
if args_opt.checkpoint_path:
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
not_load_param = load_param_into_net(network, param_dict)
|
||||
if not_load_param:
|
||||
raise ValueError("Load param into network fail!")
|
||||
# export network
|
||||
print("============== Starting export ==============")
|
||||
inputs = Tensor(np.ones([1, 3, 224, 224]), mindspore.float32)
|
||||
export(network, inputs, file_name="resnet50_quant", file_format=args_opt.file_format,
|
||||
quant_mode='MANUAL', mean=0., std_dev=48.106)
|
||||
print("============== End export ==============")
|
Loading…
Reference in new issue