parent
478200d2fe
commit
f60d81a15f
@ -0,0 +1,206 @@
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
predict = self.network(x)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
def test_reshape_unexpand():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.reshape = P.Reshape()
|
||||
self.mul = P.Mul().shard(((1, 8), (1, 1, 8)))
|
||||
self.mul_weight = Parameter(Tensor(np.ones([96, 128]), dtype=ms.float32), name="weight")
|
||||
|
||||
def construct(self, x):
|
||||
weight = self.reshape(self.mul_weight, (1, 128, 96))
|
||||
out = self.mul(x, weight)
|
||||
return out
|
||||
|
||||
size = 8
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_1():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.reshape = P.Reshape()
|
||||
self.mul = P.Mul().shard(((1, 8), (1, 1, 8)))
|
||||
self.mul_weight = Parameter(Tensor(np.ones([96, 128]), dtype=ms.float32), name="weight")
|
||||
|
||||
def construct(self, x):
|
||||
weight = self.reshape(self.mul_weight, (1, 128, 96))
|
||||
out = self.mul(x, weight)
|
||||
return out
|
||||
|
||||
size = 8
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_2():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.reshape = P.Reshape()
|
||||
self.mul = P.Mul().shard(((1, 4, 2), (4, 2)))
|
||||
self.mul_weight = Parameter(Tensor(np.ones([128, 96]), dtype=ms.float32), name="weight")
|
||||
|
||||
def construct(self, data):
|
||||
x = self.reshape(self.mul_weight, (1, 128, 96))
|
||||
out = self.mul(x, self.mul_weight)
|
||||
return out
|
||||
|
||||
size = 8
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([128, 96]), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_3():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.reshape = P.Reshape()
|
||||
self.relu1 = P.ReLU().shard(((4, 1),))
|
||||
self.relu2 = P.ReLU().shard(((1, 4),))
|
||||
|
||||
def construct(self, data):
|
||||
x = self.relu1(data)
|
||||
x = self.reshape(x, (3, 4))
|
||||
x = self.relu2(x)
|
||||
return x
|
||||
|
||||
size = 4
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([4, 3]), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_4():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.reshape = P.Reshape()
|
||||
self.relu1 = P.ReLU().shard(((4, 1),))
|
||||
self.relu2 = P.ReLU().shard(((1, 2, 2),))
|
||||
|
||||
def construct(self, data):
|
||||
x = self.relu1(data)
|
||||
x = self.reshape(x, (3, 2, 2))
|
||||
x = self.relu2(x)
|
||||
return x
|
||||
|
||||
size = 4
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([4, 3]), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_5():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.reshape = P.Reshape()
|
||||
self.relu1 = P.ReLU().shard(((2, 2, 1),))
|
||||
self.relu2 = P.ReLU().shard(((1, 4),))
|
||||
|
||||
def construct(self, data):
|
||||
x = self.relu1(data)
|
||||
x = self.reshape(x, (3, 4))
|
||||
x = self.relu2(x)
|
||||
return x
|
||||
|
||||
size = 4
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([2, 2, 3]), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_6():
|
||||
class Net(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.reshape = P.Reshape()
|
||||
self.relu1 = P.ReLU().shard(((2, 1),))
|
||||
self.relu2 = P.ReLU().shard(((1, 1, 4),))
|
||||
|
||||
def construct(self, data):
|
||||
x = self.relu1(data)
|
||||
x = self.reshape(x, (1, 3, 4))
|
||||
x = self.relu2(x)
|
||||
return x
|
||||
|
||||
size = 4
|
||||
context.set_auto_parallel_context(device_num=size, global_rank=0)
|
||||
x = Tensor(np.ones([4, 3]), dtype=ms.float32)
|
||||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
Loading…
Reference in new issue