modify example

pull/8405/head
Jiaqi 4 years ago
parent dc0cf6f66c
commit f795b401bf

@ -595,9 +595,7 @@ class CumProd(PrimitiveWithInfer):
Tensor, has the same shape and dtype as the `input_x`.
Examples:
>>> a = 1
>>> b = 2
>>> c = 3
>>> a, b, c, = 1, 2, 3
>>> input_x = Tensor(np.array([a, b, c]).astype(np.float32))
>>> op0 = P.CumProd()
>>> output0 = op0(input_x, 0) # output=[a, a * b, a * b * c]

@ -1970,7 +1970,8 @@ class SmoothL1Loss(PrimitiveWithInfer):
>>> loss = P.SmoothL1Loss()
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> loss(input_data, target_data)
>>> output = loss(input_data, target_data)
>>> print(output)
[0, 0, 0.5]
"""
@ -2011,7 +2012,8 @@ class L2Loss(PrimitiveWithInfer):
Examples
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16)
>>> l2_loss = P.L2Loss()
>>> l2_loss(input_x)
>>> output = l2_loss(input_x)
>>> print(output)
7.0
"""
@ -2047,7 +2049,8 @@ class DataFormatDimMap(PrimitiveWithInfer):
Examples:
>>> x = Tensor([0, 1, 2, 3], mindspore.int32)
>>> dfdm = P.DataFormatDimMap()
>>> dfdm(x)
>>> output = dfdm(x)
>>> print(output)
[0 3 1 2]
"""
@ -2086,6 +2089,7 @@ class RNNTLoss(PrimitiveWithInfer):
Examples:
>>> B, T, U, V = 1, 2, 3, 5
>>> blank = 0
>>> acts = np.random.random((B, T, U, V)).astype(np.float32)
>>> labels = np.array([[1, 2]]).astype(np.int32)
>>> input_length = np.array([T] * B).astype(np.int32)
@ -2238,7 +2242,8 @@ class ApplyRMSProp(PrimitiveWithInfer):
>>> decay = 0.0
>>> momentum = 1e-10
>>> epsilon = 0.001
>>> result = apply_rms(input_x, mean_square, moment, learning_rate, grad, decay, momentum, epsilon)
>>> output = apply_rms(input_x, mean_square, moment, learning_rate, grad, decay, momentum, epsilon)
>>> print(output)
(-2.9977674, 0.80999994, 1.9987665)
"""
@ -2336,8 +2341,9 @@ class ApplyCenteredRMSProp(PrimitiveWithInfer):
>>> decay = 0.0
>>> momentum = 1e-10
>>> epsilon = 0.05
>>> result = centered_rms_prop(input_x, mean_grad, mean_square, moment, grad,
>>> output = centered_rms_prop(input_x, mean_grad, mean_square, moment, grad,
>>> learning_rate, decay, momentum, epsilon)
>>> print(output)
[[[ -6. -9.024922]
[-12.049845 -15.074766]
[-18.09969 -21.124613]]
@ -2418,6 +2424,7 @@ class LayerNorm(Primitive):
>>> beta = Tensor(np.ones([3]), mindspore.float32)
>>> layer_norm = P.LayerNorm()
>>> output = layer_norm(input_x, gamma, beta)
>>> print(output)
([[-0.22474492, 1., 2.2247488], [-0.22474492, 1., 2.2247488]],
[[2.], [2.]], [[0.6666667], [0.6666667]])
"""
@ -2453,7 +2460,8 @@ class L2Normalize(PrimitiveWithInfer):
Examples:
>>> l2_normalize = P.L2Normalize()
>>> input_x = Tensor(np.random.randint(-256, 256, (2, 3, 4)), mindspore.float32)
>>> result = l2_normalize(input_x)
>>> output = l2_normalize(input_x)
>>> print(output)
[[[-0.47247353 -0.30934513 -0.4991462 0.8185567 ]
[-0.08070751 -0.9961299 -0.5741758 0.09262337]
[-0.9916556 -0.3049123 0.5730487 -0.40579924]
@ -2497,7 +2505,8 @@ class DropoutGenMask(Primitive):
>>> dropout_gen_mask = P.DropoutGenMask()
>>> shape = (2, 4, 5)
>>> keep_prob = Tensor(0.5, mindspore.float32)
>>> mask = dropout_gen_mask(shape, keep_prob)
>>> output = dropout_gen_mask(shape, keep_prob)
>>> print(output)
[249, 11, 134, 133, 143, 246, 89, 52, 169, 15, 94, 63, 146, 103, 7, 101]
"""
@ -2601,7 +2610,8 @@ class ResizeBilinear(PrimitiveWithInfer):
Examples:
>>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.float32)
>>> resize_bilinear = P.ResizeBilinear((5, 5))
>>> result = resize_bilinear(tensor)
>>> output = resize_bilinear(tensor)
>>> print(output)
[[[[1. 2. 3. 4. 5.]
[1. 2. 3. 4. 5.]
[1. 2. 3. 4. 5.]
@ -2657,7 +2667,8 @@ class OneHot(PrimitiveWithInfer):
>>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32)
>>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32)
>>> onehot = P.OneHot()
>>> result = onehot(indices, depth, on_value, off_value)
>>> output = onehot(indices, depth, on_value, off_value)
>>> print(output)
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
"""
@ -2948,10 +2959,11 @@ class SigmoidCrossEntropyWithLogits(PrimitiveWithInfer):
Tensor, with the same shape and type as input `logits`.
Examples:
>>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float16))
>>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float16))
>>> logits = Tensor(np.array([[-0.8, 1.2, 0.7], [-0.1, -0.4, 0.7]]).astype(np.float32))
>>> labels = Tensor(np.array([[0.3, 0.8, 1.2], [-0.6, 0.1, 2.2]]).astype(np.float32))
>>> sigmoid = P.SigmoidCrossEntropyWithLogits()
>>> sigmoid(logits, labels)
>>> output = sigmoid(logits, labels)
>>> print(output)
[[0.6113 0.5034 0.263 ]
[0.5845 0.553 -0.4365]]
"""

Loading…
Cancel
Save