parent
a38c996c9c
commit
f8a00d52af
@ -0,0 +1,63 @@
|
|||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
""" test '~' """
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
from mindspore import context
|
||||||
|
|
||||||
|
|
||||||
|
class InvertNet(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(InvertNet, self).__init__()
|
||||||
|
self.t = Tensor(np.array([True, False, True]))
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
invert_t = ~self.t
|
||||||
|
invert_x = ~x
|
||||||
|
ret = (invert_t, invert_x)
|
||||||
|
return ret
|
||||||
|
|
||||||
|
|
||||||
|
def test_invert_bool_tensor():
|
||||||
|
net = InvertNet()
|
||||||
|
input_x = Tensor(np.array([False, True, False]))
|
||||||
|
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE)
|
||||||
|
ret = net(input_x)
|
||||||
|
assert (ret[0].asnumpy() == np.array([False, True, False])).all()
|
||||||
|
assert (ret[1].asnumpy() == np.array([True, False, True])).all()
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
net(input_x)
|
||||||
|
|
||||||
|
|
||||||
|
def test_invert_int_tensor():
|
||||||
|
net = InvertNet()
|
||||||
|
input_x = Tensor(np.array([1, 2, 3], np.int32))
|
||||||
|
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE)
|
||||||
|
with pytest.raises(TypeError) as err:
|
||||||
|
net(input_x)
|
||||||
|
assert "For 'LogicalNot or '~' operator', the type of `x` should be subclass of Tensor[Bool], " \
|
||||||
|
"but got Tensor[Int32]" in str(err.value)
|
||||||
|
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
with pytest.raises(TypeError) as err:
|
||||||
|
net(input_x)
|
||||||
|
assert "For 'LogicalNot or '~' operator', the type of `x` should be subclass of Tensor[Bool], " \
|
||||||
|
"but got Tensor[Int32]" in str(err.value)
|
Loading…
Reference in new issue