parent
e69dff1548
commit
f90629a01d
@ -0,0 +1,131 @@
|
||||
# BERT Example
|
||||
## Description
|
||||
This example implements pre-training, fine-tuning and evaluation of [BERT-base](https://github.com/google-research/bert)(the base version of BERT model) and [BERT-NEZHA](https://github.com/huawei-noah/Pretrained-Language-Model)(a Chinese pretrained language model developed by Huawei, which introduced a improvement of Functional Relative Positional Encoding as an effective positional encoding scheme).
|
||||
|
||||
## Requirements
|
||||
- Install [MindSpore](https://www.mindspore.cn/install/en).
|
||||
- Download the zhwiki dataset from <https://dumps.wikimedia.org/zhwiki> for pre-training. Extract and clean text in the dataset with [WikiExtractor](https://github.com/attardi/wiliextractor). Convert the dataset to TFRecord format and move the files to a specified path.
|
||||
- Download the CLUE dataset from <https://www.cluebenchmarks.com> for fine-tuning and evaluation.
|
||||
> Notes:
|
||||
If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
|
||||
|
||||
## Running the Example
|
||||
### Pre-Training
|
||||
- Set options in `config.py`. Make sure the 'DATA_DIR'(path to the dataset) and 'SCHEMA_DIR'(path to the json schema file) are set to your own path. Click [here](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html#tfrecord) for more information about dataset and the json schema file.
|
||||
|
||||
- Run `run_pretrain.py` for pre-training of BERT-base and BERT-NEZHA model.
|
||||
|
||||
``` bash
|
||||
python run_pretrain.py --backend=ms
|
||||
```
|
||||
|
||||
### Fine-Tuning
|
||||
- Set options in `finetune_config.py`. Make sure the 'data_file', 'schema_file' and 'ckpt_file' are set to your own path, set the 'pre_training_ckpt' to save the checkpoint files generated.
|
||||
|
||||
- Run `finetune.py` for fine-tuning of BERT-base and BERT-NEZHA model.
|
||||
|
||||
```bash
|
||||
python finetune.py --backend=ms
|
||||
```
|
||||
|
||||
### Evaluation
|
||||
- Set options in `evaluation_config.py`. Make sure the 'data_file', 'schema_file' and 'finetune_ckpt' are set to your own path.
|
||||
|
||||
- Run `evaluation.py` for evaluation of BERT-base and BERT-NEZHA model.
|
||||
|
||||
```bash
|
||||
python evaluation.py --backend=ms
|
||||
```
|
||||
|
||||
## Usage
|
||||
### Pre-Training
|
||||
```
|
||||
usage: run_pretrain.py [--backend BACKEND]
|
||||
|
||||
optional parameters:
|
||||
--backend, BACKEND MindSpore backend: ms
|
||||
```
|
||||
|
||||
## Options and Parameters
|
||||
It contains of parameters of BERT model and options for training, which is set in file `config.py`, `finetune_config.py` and `evaluation_config.py` respectively.
|
||||
### Options:
|
||||
```
|
||||
Pre-Training:
|
||||
bert_network version of BERT model: base | large, default is base
|
||||
epoch_size repeat counts of training: N, default is 40
|
||||
dataset_sink_mode use dataset sink mode or not: True | False, default is True
|
||||
do_shuffle shuffle the dataset or not: True | False, default is True
|
||||
do_train_with_lossscale use lossscale or not: True | False, default is True
|
||||
loss_scale_value initial value of loss scale: N, default is 2^32
|
||||
scale_factor factor used to update loss scale: N, default is 2
|
||||
scale_window steps for once updatation of loss scale: N, default is 1000
|
||||
save_checkpoint_steps steps to save a checkpoint: N, default is 2000
|
||||
keep_checkpoint_max numbers to save checkpoint: N, default is 1
|
||||
init_ckpt checkpoint file to load: PATH, default is ""
|
||||
data_dir dataset file to load: PATH, default is "/your/path/cn-wiki-128"
|
||||
schema_dir dataset schema file to load: PATH, default is "your/path/datasetSchema.json"
|
||||
optimizer optimizer used in the network: AdamWerigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
|
||||
|
||||
Fine-Tuning:
|
||||
task task type: NER | XNLI | LCQMC | SENTI
|
||||
data_file dataset file to load: PATH, default is "/your/path/cn-wiki-128"
|
||||
schema_file dataset schema file to load: PATH, default is "/your/path/datasetSchema.json"
|
||||
epoch_num repeat counts of training: N, default is 40
|
||||
ckpt_prefix prefix used to save checkpoint files: PREFIX, default is "bert"
|
||||
ckpt_dir path to save checkpoint files: PATH, default is None
|
||||
pre_training_ckpt checkpoint file to load: PATH, default is "/your/path/pre_training.ckpt"
|
||||
optimizer optimizer used in the network: AdamWeigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
|
||||
|
||||
Evaluation:
|
||||
task task type: NER | XNLI | LCQMC | SENTI
|
||||
data_file dataset file to load: PATH, default is "/your/path/evaluation.tfrecord"
|
||||
schema_file dataset schema file to load: PATH, default is "/your/path/schema.json"
|
||||
finetune_ckpt checkpoint file to load: PATH, default is "/your/path/your.ckpt"
|
||||
```
|
||||
|
||||
### Parameters:
|
||||
```
|
||||
Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation):
|
||||
batch_size batch size of input dataset: N, default is 16
|
||||
seq_length length of input sequence: N, default is 128
|
||||
vocab_size size of each embedding vector: N, default is 21136
|
||||
hidden_size size of bert encoder layers: N, default is 768
|
||||
num_hidden_layers number of hidden layers: N, default is 12
|
||||
num_attention_heads number of attention heads: N, default is 12
|
||||
intermediate_size size of intermediate layer: N, default is 3072
|
||||
hidden_act activation function used: ACTIVATION, default is "gelu"
|
||||
hidden_dropout_prob dropout probability for BertOutput: Q, default is 0.1
|
||||
attention_probs_dropout_prob dropout probability for BertAttention: Q, default is 0.1
|
||||
max_position_embeddings maximum length of sequences: N, default is 512
|
||||
type_vocab_size size of token type vocab: N, default is 16
|
||||
initializer_range initialization value of TruncatedNormal: Q, default is 0.02
|
||||
use_relative_positions use relative positions or not: True | False, default is False
|
||||
input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True
|
||||
token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True
|
||||
dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32
|
||||
compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16
|
||||
|
||||
Parameters for optimizer:
|
||||
AdamWeightDecayDynamicLR:
|
||||
decay_steps steps of the learning rate decay: N, default is 12276*3
|
||||
learning_rate value of learning rate: Q, default is 1e-5
|
||||
end_learning_rate value of end learning rate: Q, default is 0.0
|
||||
power power: Q, default is 10.0
|
||||
warmup_steps steps of the learning rate warm up: N, default is 2100
|
||||
weight_decay weight decay: Q, default is 1e-5
|
||||
eps term added to the denominator to improve numerical stability: Q, default is 1e-6
|
||||
|
||||
Lamb:
|
||||
decay_steps steps of the learning rate decay: N, default is 12276*3
|
||||
learning_rate value of learning rate: Q, default is 1e-5
|
||||
end_learning_rate value of end learning rate: Q, default is 0.0
|
||||
power power: Q, default is 5.0
|
||||
warmup_steps steps of the learning rate warm up: N, default is 2100
|
||||
weight_decay weight decay: Q, default is 1e-5
|
||||
decay_filter function to determine whether to apply weight decay on parameters: FUNCTION, default is lambda x: False
|
||||
|
||||
Momentum:
|
||||
learning_rate value of learning rate: Q, default is 2e-5
|
||||
momentum momentum for the moving average: Q, default is 0.9
|
||||
```
|
||||
|
Loading…
Reference in new issue