|
|
|
@ -43,6 +43,8 @@ args_opt = parser.parse_args()
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
target = args_opt.device_target
|
|
|
|
|
ckpt_save_dir = config.save_checkpoint_path
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
|
|
|
|
|
if not args_opt.do_eval and args_opt.run_distribute:
|
|
|
|
|
if target == "Ascend":
|
|
|
|
|
device_id = int(os.getenv('DEVICE_ID'))
|
|
|
|
@ -80,13 +82,13 @@ if __name__ == '__main__':
|
|
|
|
|
else:
|
|
|
|
|
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
|
|
|
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
|
|
|
|
|
amp_level="O2", keep_batchnorm_fp32=True)
|
|
|
|
|
amp_level="O2", keep_batchnorm_fp32=False)
|
|
|
|
|
|
|
|
|
|
time_cb = TimeMonitor(data_size=step_size)
|
|
|
|
|
loss_cb = LossMonitor()
|
|
|
|
|
cb = [time_cb, loss_cb]
|
|
|
|
|
if config.save_checkpoint:
|
|
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_steps,
|
|
|
|
|
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs*step_size,
|
|
|
|
|
keep_checkpoint_max=config.keep_checkpoint_max)
|
|
|
|
|
ckpt_cb = ModelCheckpoint(prefix="resnet", directory=ckpt_save_dir, config=config_ck)
|
|
|
|
|
cb += [ckpt_cb]
|
|
|
|
|